
www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 163

Optimization Techniques in Machine Learning and Deep

Learning

Ashutosh.V.Patil 1, Gayatri.Y.Bhangle 2

1Student, SCTR’s Pune Institute of Computer Technology, Information Technology, Pune, Maharashtra, India

ashutoshpatil359@gmail.com
2Student, SCTR’s Pune Institute of Computer Technology, Information Technology, Pune, Maharashtra, India

gayatribhangle18@gmail.com

Abstract

Optimization is an important part of machine learning and has attracted many research interests in this-field. As the

amount of data continues to increase and the complexity of the model increases, optimization technology will face

more challenges. Therefore, to solve these problems, this paper provides a reasonable analysis of different

optimization methods in machine learning and deep learning. Here, we examine some methods such as gradient

descent and their variants such as stochastic gradient, batch gradient, minibatch gradient, as well as advanced

gradient methods such as power, RMSprop, Adam.

addition, we investigate evolutionary algorithms and Bayesian optimization as well as special techniques for training

deep neural networks. By experimenting with and evaluating the effectiveness of various models, we demonstrate

the advantages and limitations of each method and provide insight into the practical use of developing a good model.

1. Introduction

Machine learning[1] has fleetly advanced, getting a crucial research area and impacting colourful fields like

translation, speech recognition[5], and image recommendation. At its core, machine learning relies heavily on

optimization to minimize cost functions and tune model parameters from data. Maximization or Minimization is one

of the fundamental pillars of machine learning [3].

The essence of most machine learning algorithms the most fundamental of machine learning is mathematical

optimization, which deals with calculations of the parameters of a system designed to make decisions based on the

information that is not available. This is now known to be the best choice for a given learning problem [6]. So, such

success of optimization in ML has motivated extra-ordinary number of analysts and information researchers in

various ranges to handle more profound challenges in machine learning issues and to plan the new algorithm or

strategies which are broadly pertinent in these ranges.

As importance in optimization in machine learning and deep learning can be understood through three key aspects:

(i) part in model performance (ii) effectiveness in training (iii) impact on modern operations. Similar in case it has

different parameters like loss function, assigned weights, hyper parameters and other. So sometimes it can be also

more challenging to the function which is defined for giving the optimized path or result for a corresponding

function.[2]

Literature Survey

In [1], a study was conducted on various optimization methods used in training ML models. The study emphasizes

the crucial role of optimization in fine-tuning hyperparameters to make less the error attribute, therefore enhancing

the effectiveness and generalization. This paper discusses several enhancement strategies, including GD variants, η,

DL problems and second order. Here principles, applications & advantages are outlined, with a focus on this

applicability in overcoming challenges.

In [2], The paper titled "Optimization Algorithms for Machine Learning Models" explores various enhancement

techniques used to enhance the efficiency of ML algorithms, specifically in predicting employee attrition. The study

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 164

covers several key optimization methods, including DL algorithms, clustering algorithm, normalizations and other

GD’s. Each algorithm's advantages, disadvantages, and implementation are discussed, with a attention on efficiency

of correctness, speed and stability in the machine learning algorithms.

In [3], The paper titled "Optimization and plan of machine learning computational procedure for expectation of

physical partition handle" presents the development with optimization of machine learning (ML) methods to predict

and understand physical separation processes, specifically using adsorption for impurity removal from water. It

achives high accuracy (R² > 0.9). The paper demonstrates that GB and ET models outperform RF, providing a

robust approach for modelling adsorption with limited data.

In [4], The paper, "The Impact of Interdisciplinary Approaches on the Development of New Materials and

Technologies", explores how interdisciplinary approaches, particularly the integration of materials science with

other fields such as biology and engineering, have led to significant advancements in the development of new

materials and technologies. The authors highlight the importance of collaborative efforts and the use of advanced

computational techniques to design and optimize materials with novel properties.

In [5], "Overview of optimization calculations in cutting edge Neural systems", paper provides a comprehensive

overview various algorithms used in NN focusing on 1st order, 2nd order and various IG methods. The authors

classify and evaluate various optimization techniques, including Stochastic Gradient Descent (SGD), Adam, Quasi-

Newton methods and more. The paper emphasizes on significance of these algorithms in improving the accuracy

and efficiency of neural network training, particularly in challenging applications such as quantum computations and

spiking neural networks.

2. Fundamentals of Optimization in machine Learning

Almost all machine learning algorithms can be designed as an optimization problem[1] for calculating minimum

function value. Creating a model and creating a suitable role is the first step in the machine learning. After the

objective function is created ,appropriate numbers or optimization tests are usually used to solve the problems to be

solved. ML algorithms can be classified into supervised learning and unsupervised learning. So, below is the

equation for the two types.

2.1. Supervised Learning Enhancement

In the directed approach , the objective was to discover the ideal mapping work f(x) to play down the error value of

the preparing tests which are given to be as follows:

𝑚𝑖𝑛𝜃
1

𝑅
 ∑ 𝐺(𝑦𝑖 , 𝑓(𝑥𝑖 , 𝜃))

𝑟

𝑖=0
 (1)

where R is the number of preparing tests work, 𝑥𝑖 specifies point vector of the i_th tests, 𝑦𝑖 is the comparing

marker, and G down of error value[5].

2.2. Optimization of Unsupervised Learning

Clustering algorithms divides tests into multiple clusters pointing to play down contrasts between the tests within the

same are one of kind from each other.[1][5] The k-means clustering calculate points to optimize the following low

error function:

𝑚𝑖𝑛𝑆 + ∑ 𝑑
𝑑=1 ∑ p∈𝑆𝑑

||𝑥-𝜇𝑑|| (2)

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 165

where:

d is the number of clusters, p is the include vector of tests, µd is the middle of cluster d, and Sd is the test set of

cluster d

For a function 𝑓(𝑥) the gradient is:

∇𝑓(𝑥) = (
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
) (2)

2.3. Formal Optimization Problem Statement: In machine learning, optimization problems emerge from the

formulation of prediction and loss functions, which are encapsulated within the expected risk that the model seeks to

minimize.[6]

As some of the algorithms in machine learning fails to train the deep neural networks so there the advance

techniques originate. Again, let’s look over the fundamental role of optimization in deep learning in short.

2.4. Training Deep Neural Networks

• Objective Function: In DL, optimization focuses on minimizing a low function that quantifies the mistake

between anticipated and genuine values over potentially millions of parameters.

• Complexity: Deep neural networks have many layers and parameters, making the optimization problem

highly complex. Effective optimization is crucial to ensure convergence and avoid issues like vanishing or

exploding gradients. [6][2][5]

2.5. Gradient-Based Optimization

• Algorithm Choices: Advanced gradient-based optimization algorithms like Adam, RMSprop, and AdaGrad

are essential for training deep learning models efficiently[6]. These methods adapt the learning rate and use

past gradients to improve convergence.

• Momentum and Adaptive Learning Rates: Techniques like momentum and adaptive learning rates offer

assistance speeding up training and improving the joining rate by adjusting the update rules based on past

gradients[4].

2.6. Regularization and Generalization

• Regularization: Optimization also includes techniques[2] for regularization to prevent overfitting and

enhance the model’s capability to generalize to concealed information.

• Hyper parameter Tuning: Finding the best hyper parameters (e.g. learning rate, bunch size) through

optimization procedures like search in grid or Bayesian optimization is crucial for enhancing the model’s

performance

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 166

2.7. System Overview:

Fig. 1. Overall flow of the Optimization

3. Gradient optimization Techniques

3.1. Gradient Descent:

To model a problem efficiently, we aim to minimize cost, reduce computational power, and enhance performance.

GD may be a crucial optimization algorithm utilized to discover the least of a function 𝑓(𝑥), significant in machine

learning and Deep learning.[6][7][8] It works by iteratively adjusting parameters w to play down the less error

function 𝐽(𝑤) which measures how well a model’s predictions coordinate the real information. The objective is to

play down this large cost function to progress model accuracy. Consider , a case of fitting a line to a set of data

points using a linear equation: 𝒚 = 𝒎𝒙 + 𝒄 where:

• 𝑚 is the incline of the line and 𝑐 is the y-intercept

3.2. Challenges in line fitting

Fig. 2 Representation of Minima and Maxima

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 167

• Global Minimum:

The minima of global means where the cost function is at its absolute lowest across the entire domain. To find it,

gradient descent iteratively adjusts parameters to minimize the cost function, though achieving this can be

challenging with complex losses.[8]

Mathematical expression 𝑓𝑜𝑟 𝑥 = 𝑥0 to be at a global minimum could be:

𝑓(𝑥0) ≤ 𝑓(𝑥) ∀ 𝑥 𝑖𝑛 𝑒𝑛𝑡𝑖𝑟𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

• Local Minima:

A local minimum is where the cost function is lower than at nearby points but may not be the lowest value across

the entire domain. [8] This GD can meet to a nearby minima of local rather than the minima of global, particularly

with complex functions.

Mathematical expression 𝑓𝑜𝑟 𝑥 = 𝑥0 to be at a global minimum could be:

𝑓(𝑥0) ≤ 𝑓(𝑥) ∀ 𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑥0

• Global Maxima:

A global maximum is the highest point in a function's domain, with the function's value being the highest compared

to all other points [6]. There can be one or multiple global maxima if the highest value is achieved at several points.

Mathematical expression 𝑓𝑜𝑟 𝑥 = 𝑥0 to be at a global minimum could be:

𝑓(𝑥0) ≥ 𝑓(𝑥) ∀ 𝑥 𝑖𝑛 𝑒𝑛𝑡𝑖𝑟𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

• Local Maxima:

A local maximum is a point where the function's value is higher than at nearby points but not necessarily the highest

value overall.

Mathematical expression 𝑓𝑜𝑟 𝑥 = 𝑥0 to be at a global minimum could be:

𝑓(𝑥0) ≥ 𝑓(𝑥) ∀ 𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑥0

3.3. Derivation and formulation

We've covered the concepts of maxima and minima and their conditions. Now, let's derive the equations for

𝑚 𝑎𝑛𝑑 𝑐 the Gradient Descent Algorithm.[6][8] The general update for 𝑦 = 𝑎𝑥 + 𝑏 formula in Gradient Descent is:

𝜃 = 𝜃 − 𝐿𝑅 ∗
𝜕𝐽(𝜃)

𝜕𝜃
 (3)

For a parameter 𝜃 (which could be 𝑎 𝑜𝑟 𝑏) which defines the slope or intercept of a best fit line.

where:

• 𝜃 is the parameter being updated

• LR is the learning rate

•
𝜕𝐽(𝜃)

𝜕𝜃
 is the angle gradient of the tests function J with regard to 𝜃

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 168

• Specific updates for 𝒎 𝒂𝒏𝒅 𝒄:

𝑎 = 𝑎 − 𝐿𝑅 ∗ 𝑝𝑑(𝑎) (4)

where:

• 𝑝𝑑(𝑎) represents the fractional derivation of the tests function with regard to 𝑎, denoted as
𝜕𝐽

𝜕𝑎

𝑏 = 𝑏 − 𝐿𝑅 ∗ 𝑝𝑑(𝑏) (5)

where:

• 𝑝𝑑(𝑏) represents the derivation of the tests function with regard to 𝑐, denoted as
𝜕𝐽

𝜕𝑏

3.3.1. Interpretation

• Gradient Calculation: 𝑝𝑑(𝑎) 𝑎𝑛𝑑 𝑝𝑑(𝑏) are the gradients showing the direction and rate of change for each

parameter.

• Learning Rate: LR controls the step size in the direction opposite the gradient. A small LR means slow

convergence, while a large LR might overshoot.

3.3.2. After this the mean squared error is given as

𝑀𝑆𝐸 =
1

𝑛
∑ 𝑛

𝑛=1 ((𝑟𝑖 − (𝑎𝑥𝑖 + 𝑏)))2 (6)

So, by comparing the equations 1,2,3 we calculate the partial derivative of
𝜕𝐽

𝜕𝑎
 𝑎𝑛𝑑

𝜕𝐽

𝜕𝑏
. After formulating the

equations,

𝑝𝑑(𝑎) =
−2

𝑞
∑ 𝑥𝑖𝑖 (𝑟𝑖 − (𝑎𝑥𝑖 + 𝑔))

𝑞

𝑞=1
 (7)

 𝑝𝑑(𝑏) =
−2

𝑝
∑ (𝑟𝑖 − (𝑎𝑥𝑖 + 𝑔))

𝑝

𝑝=1
− 1 (8)

Then you should update the parameters using chain rule :

𝑤1 = 𝑤1 − 𝐿𝑅 ∗
𝜕

𝜕𝑤1
 (9)

𝑤2 = 𝑤2 − 𝐿𝑅 ∗
𝜕

𝜕𝑤2
 (10)

Again for further calculation the steps could be:

• Define the values of 𝑥 𝑎𝑛𝑑 𝑦 ii) Assume values of 𝑚 𝑎𝑛𝑑 𝑐 iii) Calculate partial derivative of 𝐽(𝑚, 𝑐) iv)

Update the parameters as

𝑐𝑛𝑒𝑤 = 𝑜𝑙𝑑 − 𝐿𝑅 ∗
𝜕𝐽

𝜕𝑐
 and similarly for 𝑚 (11)

In Machine Learning, Gradient Descent has limitations, leading to the development of its variants. In the graph

below, the arrow indicates where the function [8]starts decreasing in cost. By calculating the derivative, we observed

that :

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 169

0

5

10

-4 -2 0 2 4

+ve
-

-ve

min(0)

Fig. 3 Minimize the Loss function (x increases and f(x)decreases)

3.4. Limitations of Gradient Descent

• High Computational Load: Expensive and slow for large or high-dimensional datasets.

• Memory Usage: Requires a lot of memory to store and process large datasets.

• Learning Rate Sensitivity: Performance depends on the learning rate, which can affect convergence.

3.5. Types of Gradient Descent

3.5.1. Batch Gradient Descent

BGD calculates the steepest descent using the entire dataset, making it suitable for smaller datasets. It updates

parameters based on this complete gradient computation. Batch Gradient Descent (BGD) [6][8]is a variant of the

Gradient Descent optimization calculation utilized to discover the least of a error function. It’s commonly

employed in machine learning and DNN’s to optimize the hyperparameters of a model. Similarly, name indicates

the batch gradient it takes over a batch of samples to calculate the each of the training samples.

Given:

𝜃 represents the parameters of the model, 𝐽(𝜃) is the cost function, α(alpha) is the learning rate

𝜃 = 𝜃 − 𝛼 ∗
1

𝑚
∑ ∇𝜃𝐽(𝜃)𝑛

𝑛=1 (12)

here:

• 𝑚 represents quantity of training examples

• ∇𝜃𝐽(𝜃) is the steepest of the cost function

• 𝐽(𝜃) with regard to the parameters 𝜃

Limitations of Batch Gradient

• Slow Convergence: While working on large dataset, it can lead to slow processing.

• Fixed Learning Rate & Not Suitable for Large Datasets: A fixed learning rate may not suit all training

stages, affecting convergence. High computational and memory demands.

It offers accurate gradient estimates and stable convergence, it can be computationally expensive [3]and memory-

intensive, particularly for huge datasets. Variations like Mini-Batch Steepest Descent and progressed optimization

calculations have been developed for addressing these limitations.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 170

Algorithm 1. Batch Gradient Descent: Dataset features 𝑋, true labels 𝑦𝑡𝑟𝑢𝑒 , number of epochs, learning

rate 𝜂, Trained weights 𝑤, bias 𝑏

• Initialize w ← 1, b ← 0, n ← number of samples in X

• d ← number of features in X

• Initialize empty lists for cost list and epoch list each epoch i from 1 to epochs

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑋 ∗ 𝑤 + 𝑏 (13)

o compute the gradient for weights (w_grad and b_grad) using:

 𝑤𝑔𝑟𝑎𝑑 = −
2

𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑚
∗ 𝑋𝑇 ∗ (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (14)

𝑏𝑔𝑟𝑎𝑑 = −
2

𝑡𝑜𝑡𝑎𝑙_𝑠𝑢𝑚
∗ 𝑋𝑇 ∗ (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) (15)

• Update the weights

 w = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑤𝑔𝑟𝑎𝑑

 b = 𝑏 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑏𝑔𝑟𝑎𝑑

• i mod 20 = 0 Append cost to cost_list and i to epoch_list, w, b, cost,cost_list, epoch_list

• Calculate the cost function :

cost =
1

𝑡𝑜𝑡𝑎𝑙_𝑠𝑢𝑚
∗ ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 (16)

3.5.2. Stochastic Steepest Descent (GD)

Stochastic steepest model progresses a parameters more frequently by utilizing the single data point (or small

subset) at a time, making it suitable for large datasets and online learning. It offers faster convergence and lower

memory utilization compared to clumped slope descent(BGD).

Gradient Descent move towards the[9] minimum slowly.

.

Given:

To update Stochastic Gradient Descent use:

𝜃 = 𝜃 − 𝛼 ∗ ∇𝜃𝐽(𝜃, 𝑥𝑖 , 𝑦𝑖) (17)

where: ∇𝜃𝐽(𝜃, 𝑥𝑖 , 𝑦𝑖) is the derivative of the function error 𝐽(𝜃) with regard to the parameters 𝜃 computed using

single tests example[8] (𝑥𝑖 , 𝑦𝑖)

3.5.3. Limitations of Stochastic Gradient

• Noisy Convergence: Updates can be inconsistent, causing oscillations.

• Hyperparameter Sensitivity: Requires careful tuning of the learning curve.

• Many Iterations: May need many iterations to converge, leading to long training times.

SGD offers faster updates and lower memory usage but can suffer from noisy convergence and sensitivity to

hyperparameters. [10] Mini-Batch SGD combines benefits of both SGD and Batch Gradient Descent to improve

efficiency and stability.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 171

Algorithm 2. Stochastic Gradient Descent: Dataset features 𝑋, true labels 𝑦𝑡𝑟𝑢𝑒 , number of epochs,

learning rate 𝜂, Trained weights 𝑤, bias 𝑏

• Initialize w ← 1, b ← 0, n ← number of samples in X

• Initialize empty lists for cost list and epoch list

• each epoch i from 1 to epochs

o Randomly pick a sample o f any_index from 0 to overall samples

o sample x ← X[any_index] sample y ← ytrue[any_index]

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑆𝑎𝑚𝑝𝑙𝑒_𝑥 ∗ 𝑤 + 𝑏

o compute the gradient for weights (w_grad and b_grad) using:

𝑤𝑔𝑟𝑎𝑑 = −2 ∗ 𝑠𝑎𝑚𝑝𝑙𝑒_𝑥(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

 𝑏𝑔𝑟𝑎𝑑 = −2 ∗ (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

• Update the weights

 w = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑤𝑔𝑟𝑎𝑑

 b = 𝑏 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑏𝑔𝑟𝑎𝑑

• i mod 100 = 0 Append cost to cost_list and i to epoch_list, w, b, cost,cost_list, epoch_list

• calculate the cost function

 cost = 𝑠𝑞𝑢𝑎𝑟𝑒 ∗ (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

3.5.4. Mini-Batch Optimization

Mini-Batch slope plunge combines various aspects of BGD and SGD by utilizing little, arbitrarily chosen subsets of

the preparing information (mini-batches) to upgrade model parameters[10].

Given:

• 𝜃 represents the hyperparameters of the model

• J(θ) is the cost function, 𝛼 is a learning rate

• {(𝑥𝑖1, 𝑦𝑖1) … . (𝑥𝑖𝑏 , 𝑦𝑖𝑏)} is a mini-batch of training examples with size b

Updating Mini-Batch Gradient Descent can be done using following rule:

𝜃 = 𝜃 − 𝛼 ∗
1

𝑏
∑ ∇𝜃𝐽𝑏

𝑗=1 (𝜃, 𝑥𝑖𝑗 , 𝑦𝑖𝑗) (18)

where:

1

𝑏
∑ ∇𝜃𝐽𝑏

𝑗=1 (𝜃, 𝑥𝑖𝑗 , 𝑦𝑖𝑗) is the gradient of the cost function computed over mini-batch.

3.5.5. Limitations of Mini-Batch Gradient

• Hyperparameter Tuning: The mini-batch size affects performance; too small or too large can impact

results.

• Local Minima: Can still converge to local minima but is generally more stable than pure SGD..

• Learning Rate Sensitivity: Requires careful tuning of less η to fit it more in line.

Mini-Batch optimization[10] is a balanced approach that improves efficiency and stability compared to pure BGD or

SGD, making suitable for huge data and deep learning models.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 172

Algorithm 3. Mini-Batch Gradient Descent: Dataset features 𝑋, true labels 𝑦𝑡𝑟𝑢𝑒 , number of epochs,

learning rate 𝜂, Trained weights 𝑤, bias 𝑏

• Initialize w ← 1, b ← 0, n ← number of samples in X

• Initialize empty lists for cost list and epoch list

o each epoch epoch from 1 to epochs

Shuffle X and ytrue each mini-batch starting at start and ending at end

X batch ← X[start : end]

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑆𝑎𝑚𝑝𝑙𝑒_𝑥 ∗ 𝑤 + 𝑏

o compute the gradient for weights (w_grad and b_grad) using:

𝑤𝑔𝑟𝑎𝑑 = −
2

𝑙𝑒𝑛(𝑦𝑏𝑎𝑡𝑐ℎ)
∗ 𝑋𝑏𝑎𝑡𝑐ℎ

𝑇 (𝑦𝑏𝑎𝑡𝑐ℎ − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑏𝑔𝑟𝑎𝑑 = −
2

𝑙𝑒𝑛(𝑦𝑏𝑎𝑡𝑐ℎ)
∗ 𝑋𝑏𝑎𝑡𝑐ℎ

𝑇 (𝑦𝑏𝑎𝑡𝑐ℎ − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

• Update the weights

▪ w = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑤𝑔𝑟𝑎𝑑

▪ b = 𝑏 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑏𝑔𝑟𝑎𝑑

• i mod 10 = 0 Append cost to cost_list and i to epoch_list, w, b, cost,cost_list, epoch_list

• calculate the cost function

cost =
1

𝑡𝑜𝑡𝑎𝑙_𝑠𝑢𝑚
∗ ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 (19)

Fig. 4 Graphs Indicating their performance on the trained model Evaluation

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 173

4. Advance Gradient Algorithms

They address limitations such as noisy data and convergence issues by refining parameter updates, reducing the

impact of outliers, and improving training stability.

4.1. Momentum:

Momentum accelerates gradient descent by combining the current gradient with a fraction of the previous update.

This smooths out updates and helps navigate through areas with steep gradients, improving convergence[8][6].

Consider the following data points the time interval 𝑡 and the weights 𝑏 as follows [8]:

𝑡1 𝑡2 … … … 𝑡𝑛 , 𝑏1 𝑏2 … … … 𝑏𝑛

If the exponential moving average is applied to the time interval 𝑡1 with the weight of 𝑏1

 ∴ 𝑉1 = 𝑏1 (20)

∴ 𝑉2 = 𝛾 ∗ 𝑣1 + 𝑏2 (value of 𝛾 0 ≤ 𝛾 ≤ 1) (21)

Substituting the value of 𝑉1in equation (2) we get:

𝑉2 = 𝛾 ∗ 𝑏1 + 𝑏2 (22)

Here the most priority is given to the 𝑏2 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑏1 .,

Again for finding 𝑉3 :

∴ 𝑉3 = 𝛾 ∗ 𝑣2 + 𝑏3 (23)

Substituting the value of 𝑉2in equation (ii) we get:

∴ 𝑉3 = 𝛾 (𝛾 ∗ 𝑣1 + 𝑏2) + 𝑏3

∴ 𝑉3 = 𝛾2 ∗ 𝑏1 + 𝛾 ∗ 𝑏2 + 𝑏3

So now the final equation looks like:

∴ 𝑉3 = 𝛾2 ∗ 𝑏1 + 𝛾 ∗ 𝑏2 + 𝑏3 (24)

The momentum can be applied with SGD to remove the remaining noise of the graph.

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂 ∗
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
 (25)

Applying the exponential weighted average the equation we get is:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 [𝛾 ∗ 𝑉𝑡−1 + 𝜂 ∗
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
] (26)

where 𝑉𝑡−1 :

𝑉𝑡−1 = 1 ∗ [
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
] 𝑡 + 𝛾 ∗ [

𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
] 𝑡−1 + 𝛾2 ∗ [

𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
] 𝑡−3 … … 𝑛 (27)

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 174

Algorithm 1. Momentum: Dataset features 𝑋, true labels 𝑦𝑡𝑟𝑢𝑒 , number of epochs, learning rate 𝜂,

Trained weights 𝑤, bias 𝑏, momentum µ

• Initialize w ← 1, b ← 0, vw ← 0 (velocity for weights), vb ← 0 (velocity for bias)

n ← number of samples in X

• Initialize empty lists for cost list and epoch list

o each epoch from 1 to epochs

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑋 ∗ 𝑤 + 𝑏

o Compute the gradient for weights (w_grad,b_grad) using:

 𝑏𝑔𝑟𝑎𝑑 = −
2

𝑡𝑜𝑡𝑎𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) (28)

 𝑤𝑔𝑟𝑎𝑑 = −
2

𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 𝑋𝑏𝑎𝑡𝑐ℎ

𝑇 ∗ (𝑦𝑏𝑎𝑡𝑐ℎ − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

• Update the velocity for weights and bias using:

𝑉𝑤 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∗ 𝑉𝑤 + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑤𝑔𝑟𝑎𝑑 (29)

𝑉𝑏 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∗ 𝑉𝑏 + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑏𝑔𝑟𝑎𝑑 (30)

 𝑤 = 𝑤 − 𝑉𝑤 𝑏 = 𝑏 − 𝑉𝑏

• i mod 10 = 0 Append cost to cost_list and i to epoch_list, w, b, cost,cost_list, epoch_list

• calculate the cost function as above

4.2. AdaGrad (Adaptive Gradient Algorithm)

Adaptive Steepest Descent [1][2] adjusts the η for each parameter independently based on past angles . Parameters

with reliably huge angles of steepest get a less η , where those less steepest get bigger η [2]. The weight update

formula is:

AdaGrad is:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂′ ∗
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
 (31)

Now the values are clear so 𝜂′ with respect to time 𝑡 will be:

𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑡
′ ∗

𝜕𝐿

𝜕𝑤𝑡
 (32)

where 𝜂𝑡
′ is given by,

∴ 𝜂𝑡
′ =

𝜂

√𝛼𝑡 + 𝜖

Here the value of the η is initial as 0.01 so as the learning rates will be get changed and the value of 𝜖 is any +ve

number added to 𝛼𝑡 to avoid a big error[4]. Now the 𝛼𝑡 is given by:

𝛼𝑡 = ∑ 𝑡
𝑖=1 (

𝜕𝐿

𝜕𝑤𝑖
)

2

 (33)

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 175

Similarly, as neural networks goes deeper so the 𝛼𝑡 ↑ increases and the learning rate 𝜂 ↓ decreases.

AdaGrad's limitation is that it can grow very large over time, reducing the learning rate too much. To address this,

variants like AdaDelta and RMSprop use a weighted average instead:

∴ 𝜂𝑡
′ =

𝜂

√𝑊𝑎𝑣𝑔𝑡+𝜖
 (34)

Again the 𝜖 is the +ve number and the all-naming convention remains same as per the above AdaGrad algorithm.

Where as the weighted average 𝑊𝑎𝑣𝑔𝑡
 is given as:

𝑊𝑎𝑣𝑔𝑡
= 𝛾 ∗ 𝑊𝑎𝑣𝑔𝑡−1

+ (1 − 𝛾) ∗ (
𝜕𝐿

𝜕𝑤𝑡
)

2

 (35)

This approach prevents the learning rate from decreasing too quickly. Whereas in the case of 𝑊𝑎𝑣𝑔𝑡
 we are

restricting it for ∑ 𝑡
𝑖=1 and the value of 𝛾 should be 0.95 in approximate cases. So, the value of 𝑊𝑎𝑣𝑔𝑡

 will increase

but not will get very-very high as 𝛼𝑡 .

4.3. Adam Optimizer

Adam Optimizer combines the benefits of AdaGrad and RMSprop[8] by maintaining moving averages of both

gradients and squared gradients.

4.3.1. Algorithm

i) Initially 𝑉𝑑𝑤 = 0 𝑎𝑛𝑑 𝑉𝑑𝑏 = 0 and 𝑆𝑑𝑤 = 0 𝑎𝑛𝑑 𝑆𝑑𝑏 = 0

𝑤𝑡 = 𝑤𝑡−1 − 𝜂′ ∗ 𝑉𝑑𝑤 , 𝑏𝑡 = 𝑤𝑑𝑏 𝑡−1 − 𝜂′ ∗ 𝑉𝑑𝑏

𝜂′ =
𝜂

√𝑆𝑑𝑤 + 𝜖

ii) On iteration on 𝑡 inside epoch iii) Compute
𝜕𝑑

𝑑𝑤
 on current MBD

where 𝑉𝑑𝑤 𝑎𝑛𝑑 𝑉𝑑𝑏 is given as:

𝑉𝑑𝑤 = 𝛽𝑉𝑑𝑤 𝑡−1 + (1 − 𝛽)𝑑𝑤 ∗
𝜕𝐿

𝜕𝑤𝑡−1
 (36)

𝑉𝑑𝑏 = 𝛽𝑉𝑑𝑏 𝑡−1 + (1 − 𝛽)𝑑𝑤 ∗
𝜕𝐿

𝜕𝑏𝑡−1
 (37)

So, now the weighted average parameters looks like as:

𝑤 = 𝑤 − 𝜂 ∗ 𝑉𝑑𝑤

𝑏 = 𝑏 − 𝜂 ∗ 𝑉𝑑𝑏

So, this was the case with context of hierarchical learning to train DNN’s.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 176

Algorithm 2. Adam optimizer: Dataset features X, true labels ytrue, number of epochs, learning

rate η, β1, β2, ϵ, Trained weights w, bias b

• Initialize w ← 1, b ← 0, mw ← 0 (biased first moment estimate for weights), mb ← 0 (first

moment for b), vw ← 0 (raw 2nd moment for weights) vb ← 0 (biased second raw moment

estimate for bias), t ← 0 (time step)

• Initialize empty lists for cost list and epoch list

o each epoch epoch from 1 to epochs t ← t+1

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑋 ∗ 𝑤 + 𝑏

o compute the gradient for weights (w_grad, b_grad) using:

wgrad = −
2

𝑋. 𝑠ℎ𝑎𝑝𝑒[0]
∗ 𝑋𝑏𝑎𝑡𝑐ℎ

𝑇 ∗ (𝑦𝑏𝑎𝑡𝑐ℎ − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

bgrad = −
2

𝑋. 𝑠ℎ𝑎𝑝𝑒[0]
∗ 𝑋𝑏𝑎𝑡𝑐ℎ

𝑇 ∗ (𝑦𝑏𝑎𝑡𝑐ℎ − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

o Update the first moment estimate for weights (m_w, m_b) using:

 𝑚𝑤 = 𝛽1 ∗ 𝑚𝑤 + (1 − 𝛽1) ∗ 𝑤𝑔𝑟𝑎𝑑

 𝑚𝑏 = 𝛽1 ∗ 𝑚𝑏 + (1 − 𝛽1) ∗ 𝑏𝑔𝑟𝑎𝑑

o Update Biased Second Raw Moment Estimate:

 𝑉𝑤 = 𝛽2 ∗ 𝑉𝑤 + (1 − 𝛽2) ∗ 𝑤𝑔𝑟𝑎𝑑
2

 𝑉𝑏 = 𝛽2 ∗ 𝑉𝑏 + (1 − 𝛽2) ∗ 𝑏𝑔𝑟𝑎𝑑
2

o Compute Bias-Corrected Estimates: Compute the bias-corrected first moment estimate for weights

(m_w_hat, m_b_hat) using:

 𝑚𝑏
ℎ𝑎𝑡 =

𝑚𝑏

1−𝛽1
𝑡 (38)

 𝑉𝑤
ℎ𝑎𝑡 =

𝑉𝑤

1−𝛽1
𝑡 and 𝑉𝑏

ℎ𝑎𝑡 =
𝑉𝑏

1−𝛽2
𝑡 (39)

• Update Weights and Bias:

𝑤 = 𝑤 −
𝜂∗𝑚𝑤

ℎ𝑎𝑡

√𝑉𝑤
ℎ𝑎𝑡+𝜖

 (40)

𝑏 = 𝑏 −
𝜂∗𝑚𝑏

ℎ𝑎𝑡

√𝑉𝑏
ℎ𝑎𝑡+𝜖

 (41)

• Compute Cost:

cost = −
1

𝑋.𝑠ℎ𝑎𝑝𝑒[0]
∗ ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

These were the Algorithms that were implemented on the Banglore_Housing_Dataset and the after the plotting of

graphs we noticed the below results as:

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 177

Fig. 5 Comparison of momentum vs Adam vs RMSprop

5. Second-Order Optimization

Second-Order Optimization methods improve upon first-order methods by incorporating insights of curvature regard

of less error function, leading potentially faster convergence and better parameter updates. But they are

computationally intensive. Approximation techniques help make these methods more practical for complex

models[7][8].

5.1. Newton's Method

NM updates parameters using both the gradient and second order derivative matrix with loss equation, allowing the

adaptive step sizes based on curvature[8][7].

Newton's Update Rule

Given a loss function L(θ) where θ are the parameters, NM updates parameters according below:

Compute Gradient:

g = ∇𝐿(𝜃)

where g is the slope vector belonging to loss equation.

Compute Hessian Matrix:

H = ∇2𝐿(𝜃)

where H is the second order derivative matrix and update parameters:

𝜃𝑡+1 = 𝜃𝑡 − 𝐻−1g

Where: H is inverse of the second-order Jacobin matrix, and g is the slope vector.

5.2. Broyden-Fletcher-Goldfarb Shanno and Limited Memory bfgs

BFGS and L-BFGS are QN methods that approximate the second-order Jacobin matrix to optimize parameter

updates, especially in high-dimensional problems[7].

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 178

5.2.1. BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻−1𝑔𝑘 (42)

Where 𝛼𝑘 is the step size.

Update Hessian Approximation: Update the inverse Hessian approximation 𝐻𝑘+1
−1 using:

𝐻𝑘+1
−1 = 𝐻𝑘

−1 +
𝑦𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

 −
𝐻𝑘

−1𝑠𝑘𝑠𝑘
𝑇𝐻𝑘

−1

𝑠𝑘
𝑇𝐻𝑘

−1𝑠𝑘
 (43)

where 𝑠𝑘 = 𝜃𝑘+1 − 𝜃𝑘 𝑎𝑛𝑑 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘

5.2.2. L-BFGS (Limited-memory BFGS) algorithm

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻−1𝑔𝑘 (44)

Update Approximation: Use the limited-memory approximation to update the inverse Hessian matrix. These were

the Algorithms that were implemented on the Banglore_Housing_Dataset and the after the plotting of graphs we

noticed the below results as:

Fig. 6 Comparison of second order optimization

6 Evolutionary Algorithms

6.1 Evolutionary Algorithms Implementations

This technique leverages natural evolution principles to solve complex optimization problems. Evolutionary

algorithms (EAs)[11] are probabilistic heuristics inspired by natural selection, where only the best-suited individuals

survive and reproduce, iteratively guiding solutions toward an optimal or near-optimal outcome. Similar to

Darwinian selection, inferior solutions are discarded, while superior ones evolve to form a new generation with the

potential for improved performance..

6.2. Genetic Algorithm (GA):

The adaptive algorithms in DNN are progressive search methods inspired by natural selection. They use random

searches and historical data to focus on promising solution areas[11][2]. GAs simulates "survival of the fittest" by

evaluating and evolving a population of solutions each generation, with solution.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 179

Algorithm 1. Genetic Algorithm: Optimization variables: Population, generations, mutation rates

Hyperparameters: popoulas_size, formation in number, mutation frequency[8]

• Dataset with coordinates, population size, number of formations, mutation frequency

• Initialize ga best values as an empty list

o Initialize ga best values as an empty list

o Set population measures ← 20

o Set generations ← 100

o Set mutation freqn ← 0.1

• Initialize population with g f.sample(n = population size).to dict(′records′)

o each generation from 1 to generations

o Initialize new population as an empty list and each of populace

o Select guardian 1 utilizing selection(population, fitness)

o Select guardian 2 utilizing selection(population, fitness)

• Make child utilizing crossover(both guardians)

o Apply mutate(child, change rate)

o Add child to unused population

o individual← min(population, key = wellness) populace ← sort new populous

(m e a s u r e - 1)

• Append perfect value with its above equation

• Append fitness(perfect value) to ga perfect values best value

6.3. Particle swarm optimization (PSO)

Optimization seeks the best parameter values to meet design goals at minimal cost, used in many scientific fields[2].

Traditional algorithms often struggle with issues like local optima and unknown search spaces. To overcome these,

metaheuristics like (PSO), (GWO), (ACO), (GA), and cuckoo search were developed. This article delves into PSO,

building on the fundamentals of stochastic optimization[9][11]

6.3.1. Key Concepts:

• Particles: Individuals in the population, representing potential solutions.

• Position: A vector representing a particle's current state in the search space.

• Velocity: The rate of change of the loss position, guiding the movement.

• Best Solution(Pi): Better position of a particle has achieved largely.

• Global good solution (Gi): Good global positions achieved by some particle in PSO.

6.3.2. Overview of mathematics

• Every fragment in PSO has a related position, speed, wellness value.

• Each molecule keeps track of the bestFit, bestFitPosition.

• A record of global_best, Fit_position and global_best, Fit_value is kept up.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 180

6.3.3. Mathematical Formulation

i. Velocity Update

To change the speed of each fragment, the equation formula is:

𝑧𝑖 (𝑒 + 1) = 𝜔𝑣𝑖(𝑒) + 𝑐𝑖𝑟𝑖(𝑢𝑖 − 𝑣𝑖) + 𝑐2𝑟2(ℎ − 𝑣𝑖) (45)

Components:

• 𝑧𝑖(𝑒): Current speed of element 𝑖 at times 𝑡.

• 𝜔: Inertia weight, balancing exploration and exploitation.

• 𝑐1: Cognitive coefficient, representing the influence of the personal best position.

• 𝑟1: Any number between 0 and 1, introducing randomness as the cognitive component.

• 𝑢𝑖: Owns best position of fragment i.

• 𝑣𝑖: Current position of particle iii.

• 𝑐2: Social coefficient, representing the influence of the global best position.

• 𝑟2: Random number between 0 and 1, introducing randomness in the social component.

• ℎ: Denotes global best position found by the swarm.

ii. Position update equation

The position of each molecule is balanced utilizing:

𝑣𝑖 (𝑒 + 1) = 𝑣𝑖 (𝑒) + 𝑧𝑖(𝑒 + 1) (46)

This equation moves the particle to a new place belonging to its ongoing position and the updated velocity.

Algorithm 2: Particle Swarm Optimization: Optimization variables: Particle positions, velocities, best

positions, global best position, Parameters: weight of inertia w, coefficient c1,

sociol coefficient c2[8]

• Initialize the dataset with coordinates, number of particles, number of loops, inertia weight w,

C.coefficient c1, S.coefficient c2 Global best position and value.

• Initialize pso best values as an empty list Class Particle :

o Initialize position ← np.array([x, y])

• Initialize speed ← array[any uniform(−1, 1), any uniform(−1, 1)]

• Initialize best position ← position Initialize best value ← float(′inf ′) Method

• update velocity (global best position):

o Generate unique num r1, r2 cognitive ← c1 · r1 · (best position)

o socio ← c2 · r2 · (global best site)

o speed ← w · speed + cognitive + social Method update position():

position ← position + speed

• Load data from ”tsp.csv” and initialize particles with coordinates

o Initialize global best value ← float(′inf ′)

o Initialize global best position ← np.array([0, 0]) each iteration from 1 to 100 each

particle

o Compute value ← objective f (particle.position) value < particle.best value

 Store the best value in best position with best global value with perfect global location

• Add g’s best number to pso better values global best place , g’s value

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 181

6.4. Differential Evolution (DE)

Mechanism: DE could be a population-based calculation algorithm. It optimizes a issue by repeatedly attempting to

progress candidate arrangements based on a indicated degree of quality[4][2][8]. The key idea behind DE is the

utilize of vector contrasts for perturbation of the population members, which helps to explore the search space

efficiently.

Mechanism in Detail:

• Initialization: Each individual is represented as a vector 𝑥𝑖 .

• Mutation:

For each target vector 𝑥𝑖, a donor vector 𝑣𝑖 is produced by including the weighted difference between two

arbitrarily chosen populace vectors 𝑥𝑟2 and 𝑥𝑟3 by another randomly selected vector 𝑥𝑟1 [5][6]:

𝑣𝑖 = 𝑥𝑟1 + 𝐹. (𝑥𝑟2 − 𝑥𝑟3) (47)

• Crossover:

The crossover operation mixes the target vector 𝑥𝑖 and the giver vector 𝑣𝑖 to shape a trial vector 𝑢𝑖. The

components in trial vecs are determined as follows:

𝑢𝑖[𝑗] = {
𝑣𝑖 [𝑗] 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖[𝑗] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (48)

CR is the crossover probability, 𝑟𝑎𝑛𝑑𝑗 is a uniformly distributed random number, and 𝑗𝑟𝑎𝑛𝑑 are arbitrary

chosen num’s that ensures only one element by donor vecs [2]

• Iteration:

Steps 2 to 4 are repeated for a predetermined number of generations or until a satisfactory solution is found.

Algorithm 3: Differential Evolution: Optimization variables: Population, mutation factor,

crossover rate, generations, Parameters: populace size, mutation element, crossover rating,

number of components

• Dataset with coordinates, populace size, mutation element, crossover rates, number of components and

the best solution

• Initialize de_best_values as an empty list

o Set populace size ← 10

o Set mutation element ← 0.8

o Set crossover rating ← 0.7

o Set components ← 100

o Initialize population with np.array([x, y]) for coordinates from df

• Randomly sample population to size population size each generation from 1 to generations

• Initialize new population as an empty list each individual i in range(population size)

 Generate unique indices a idx, b idx, c idx from population

o a, b, c ← population[a idx], population[b idx], population[c idx]

• Mutation:

o Compute mutant vector ← a + mutation factor · (b − c)

• Crossover:

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 182

o Compute crossover vector by mixing mutant vector and population[i] crossover

 vector[j] ← mutant vector[j]

if random.random() < crossover rate else population[i][j]

• Selection:

o If objective function(crossover vector) < objective function(population[i])

• THEN

• Append crossover vector to new population , append population[i] for new poeple

• Update populace to new populace_int

o Compute excellent solution ← min(populace, key = objective function)

o Append objective function(best solution) to de best values best solution

7. Bayesian Optimization

Bayesian Optimization is a probabilistic method for optimizing complex, unknown functions with expensive

evaluations, like hyper parameter tuning. It uses a surrogate show, regularly a Gaussian Process, to surmised the

function and efficiently [8] guide the search toward optimal solutions with minimal evaluations.

7.1. Working

• Initial Sampling: Begin with a small set of objective function samples to train the surrogate model.

• Prediction: The surrogate model, using a Gaussian Process, predicts the mean (expected output) and variance

(uncertainty) of the objective function at new input points.

• Acquisition equation: This work equalizations investigation for and exploitation (sampling high-performance

areas)[8][8] to suggest the next evaluation point.

• Evaluation and Update: Evaluate error function with suggested calculation, update surrogate structure result

with refine predictions.

• Iteration: Repeat the process, using the surrogate model to progressively zero in on the global optimum.

Acquisition Function: Balancing Exploration and Exploitation[8][11]

In Bayesian Optimization, the acquisition function guides the selection of the next evaluation point by balancing:

i. Exploration: Investigating areas of the search space with high model uncertainty to discover potential new

solutions.

ii. Exploitation: Focusing on regions in surrogate framework calculates the large efficiency to refine best-known

solution.[4]

Using predictions from the surrogate model, typically a gaussian-methods, the this indicates the forward point to

make efficient, balancing these two objectives.

i. Expected Improvement

• Concept: EI predicts in gain over of current best solution by considering both the likelihood and magnitude

of improvement.

• Mathematical Explanation: EI calculates the expected gain over the best-observed value using the

surrogate model's mean and variance.

• Balance: EI balances exploration (uncertainty) and exploitation (potential improvement).

Formula:

𝐸𝐼(𝑥) = 𝐸[𝑚𝑎𝑧(0, 𝑓(𝑥] − 𝑓(𝑥∗))] (49)

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 183

Where f(x) is predicted value at point x, and f(x*)[4] is good value.

ii. Probability of Improvement

PI aims in maximizing of probability for improving over the best-observed value.

Mathematical Explanation: PI calculates the probability that the objective function at a new point will outperform

the best-known value, based on the surrogate model's prediction.

Balance: PI tends to favor exploitation more than exploration, especially if the threshold for improvement is set

close to the best-observed value.

Formula:

𝑃𝐼(𝑥) = ∅(
µ(𝑥) − 𝑓(𝑥∗) − £

𝜎(𝑥)
) (50)

where: µ(𝑥) & 𝜎(𝑥) are (predicted mean and S.D) at point x, f(x*) is the best-observed value, and ∅ is the total

dissemination work of the standard typical conveyance. £ is a little parameter utilized to control the exploration-

exploitation trade-off.

iii. Upper Confidence Bound (UCB)

Concept: UCB (Upper Confidence Bound) encourages exploration by focusing on areas with high uncertainty.

Mathematical Explanation: It selects points based on the predicted mean plus a multiple of the standard deviation,

balancing exploration and exploitation.

Balance: The weight of the uncertainty term can be adjusted to favor exploration or exploitation. Formula:

𝑈𝐶𝐵(𝑥) = µ(𝑥) + 𝑘. 𝜎(𝑥) (51)

Where µ(𝑥) and 𝜎(𝑥) are the predicted mean and standard deviation at point x, and k is a parameter that controls the

exploration-exploitation trade-off.

7.2. Optimization Process

Bayesian Optimization is an iterative process that refines a surrogate model and selects new evaluation points based

on an acquisition function:

• Initialization: Evaluate the objective function at initial points, often chosen randomly or via space-filling designs

like Latin Hypercube Sampling[2][4], and fit an initial surrogate model (e.g., Gaussian Process).

• Surrogate Model Update: Update the surrogate model with new objective function evaluations to better estimate

the function and its uncertainty.

• Acquisition Function Calculation: Compute the acquisition function using the updated model to balance

exploration and exploitation.

• Termination: Stop when the criterion is reached and output the best solution found.

Algorithm 4: Bayesian Optimization : Number of restarts for acquisition function, number of iterations

for optimization Bounds: Latitude and longitude ranges

• Dataset Xsample, Ysample , Gaussian Process Regressor gpr, bounds, number of n iterations

• Initialize bo_best_values as an empty list

o each iteration i from 1 to n iteration

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 184

o Fit gpr on Xsample and Ysample

• Propose the next location to evaluate using propose location(Xsample, Ysample, gpr, bounds)

o next sample ← propose location next sample ← next sample.reshape(1, −1)

• Obtain the objective function value for next sample

o next value ← objective function(next sample[0])

• Update Xsample and Ysample with next sample and next value

• Track the best value found so far

o best index ← np.argmin(Ysample) Append Ysample[best index] to bo_best_values

• Compute best solution ← Xsample[best index]

• Compute best value ← Ysample[best index]

• Print best solution, best value

Fig. 7 Graphs Indicating their performance on the trained model Evaluation

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 185

Fig. 8 Comparison of PSO , GA , DE , Bayesian optimizer

8. Challenges in Deep Learning Optimization

• Non-Convexity:

Loss functions in deep learning are typically non-convex, with multiple local minima and saddle points. Unlike

convex functions, where any local minimum is global, non-convex functions can have many zero-gradient

points[11] that aren't optimal, making it challenging to find the global minimum and leading to potential local

minima traps, especially in complex neural networks.

• Vanishing/Exploding Gradients:

In deep neural networks, gradients can either vanish (slow learning with small updates) or explode (cause

instability with large updates). This hinders training and may require careful initialization, normalization, or

alternative architectures like ResNets.

• High-Dimensional Spaces:

Deep learning models face slow and unpredictable convergence due to complex loss landscapes with many

valleys and plateaus. The curse of dimensionality worsens this by exponentially increasing space volume and

making gradients sparse and hard to interpret.

8.1. Regularization Techniques

Regularization[8] prevents overfitting by appending penalty to the error function, discouraging framework from

exact fit too closely to training data. Known types are L1 and L2 regularization.

8.1.1. L1 Regularization (Lasso)

Definition: L1 regularization[6][8], too known as Lasso, include a large loss to the misfortune work that’s relatively

to the whole of the outright values of the framework parameters (weights).

Mathematical Formulation:

The model with L1 regularization can be stated as

𝐿𝑜𝑠𝑠 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑜𝑠𝑠 + 𝜆 ∑ |𝑤 | (52)

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 186

where:

• w represents the framework parameters (weights),

• 𝜆 is the penalty term,

• ∑ |𝑤 | is whole of appropriate values of the weights.

Impact:

Encourages Sparsity: L1 regularization pushes some weights to zero, creating a sparse model.

Feature Selection: It helps identify important features by driving irrelevant weights to zero.

8.1.2. L2 Regularization (Ridge)

Definition: This regularization[6][8], too called as Ridge Regression, adds a large loss that is similar to whole of 2 of

the frameowrks parameters (weights).

Mathematical Formulation:

Incase loss function, incorporating this, can be expressed as follows:

𝐿𝑜𝑠𝑠 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑜𝑠𝑠 + 𝜆 ∑ |𝑤2 | (53)

where:

w represents the hyperparameters (weights),

𝜆 penalty term,

∑ |𝑤2 | is the sum of sqaures of the weights.

Impact:

Prevents Large Weights: Penalizes large weights, reducing model variance and improving generalization.

Smooth Solutions: Distributes weights more evenly across features, avoiding sparsity and including all features.

Note: For implementation codes please refer the below github links

• https://github.com/Gayuu03/Research

• https://github.com/bhak90-tesh/Optimization

The code has been implemented with the references to the above algorithms and [8][6][5] citations.

9. Results and Discussions

9.1. Dataset Description:

The dataset used in this analysis comprises information on residential properties in Bangalore, with a focus on three

key attributes: area, number of bedrooms, and price. Area: This column represents the size of the property, measured

in square feet It indicates a diverse range of property sizes from smaller units to larger homes. Bedrooms: This

attribute indicates the number of bedrooms in the property. The dataset features properties with a varying number of

bedrooms, from 1 to 6, Price: The price column denotes the cost of the property, expressed in lakhs of Indian Rupees

(INR).

Link for dataset: https://www.kaggle.com/datasets/amitabhajoy/bengaluru-house-price-data

https://github.com/Gayuu03/Research
https://github.com/bhak90-tesh/Optimization
https://www.kaggle.com/datasets/amitabhajoy/bengaluru-house-price-data

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 187

1) Gradient Descent Algorithms:

Table 1 Comparing MSE, MAE, 𝑹𝟐 of implemented algorithms

Optimization Algorithm MSE MAE 𝑹𝟐

Batch Gradient 0.030 0.117 -1.085

Stochastic Gradient 0.014 0.078 0.004

Mini-Batch Gradient 0.006 0.044 0.578

• MBD is the best-performing algorithm all over the three, with the cheapest metrics and huge of third

parameter from the table.

2) Advance Gradient Descent Algorithms:

Table 2 Comparing MSE, MAE, 𝑹𝟐 of implemented algorithms

Optimization Algorithm MSE MAE 𝑹𝟐

Momentum Optimizer 0.006 0.043 0.578

Adam Optimizer 0.011 0.068 0.253

RMSprop Optimizer 0.006 0.043 0.579

• RMSprop is the best-performing algorithm among the three, with the lowest MSE and the highest R²,

although Momentum is very close in performance.

3) Second Order Optimization Algorithms:

Table 3 Comparing MSE, MAE, 𝑹𝟐 of implemented algorithms

Optimization Algorithm MSE MAE 𝑹𝟐

Newton’s Optimization 0.016 0.084 -0.095

BFGS Optimization 0.006 0.043 0.579

L-BFGS Optimization 0.006 0.043 0.579

• BFGS and L-BFGS is the best-performing algorithm among the three, with the lowest MSE and the

highest R²

So, here we can conclude that Mini-Batch GD, RMSprop and BFGS and L-BFGS are the best algorithms in their

respective groups.

9.2. Dataset Description: The dataset used in this research is sourced from a file named tsp.csv. and contains

geographical information, including latitude, longitude, and city names. The dataset contains 551 entries and 4

columns, with a mix of numeric and object (string) data types. Below is a summary of each column: Column 1:

Contains numeric data (latitude coordinates), stored as float64. Column 2: Contains numeric data (longitude

coordinates), stored as float64. Column 3 (City names): Contains string data representing city or location names.

Column 4 (Unnamed: 3): Mostly contains null values, with only one non-null entry.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 188

The Dataset was created by taking the latitude and longitude points from the google map with the help of

Google_API.

1) Evolutionary Algorithms:

Table 4. Comparing the Best Value of implemented algorithms

Optimization

Algorithm

Best Value Mean Iterations to

Best

Mean Best Value Standard Dev. of

Best Value

Particle Swarm

Optimization

948.7 0.0 948.7 0.0

Genetic Algorithm 4.77 0.0 32.9 20.37

Differential

Evolution

2.9 45.4 53.8 253.67

Bayesian

Optimization

32.76 10 564.42 439.62

DE seems to be the best based on the best value and the closeness to the optimal solution, despite its higher

variability and longer average iterations.

Overall, Differential Evolution (DE) appears to be the best choice given its extremely close best value to optimal.

However, if consistency is critical, PSO might be preferred.

10 Conclusion:

This research provides a complete exploration of optimization strategies in ML, with a focus on their quantitative

impact on model performance. Experiments were conducted across several optimization algorithms, evaluating their

performance using various different key metrics. Among the gradient-based methods, Mini-Batch Gradient Descent

demonstrated superior performance with an MSE of 0.006, an MAE of 0.044, and an R² of 0.578, outperforming

both Batch and Stochastic Gradient Descent.

In advanced gradient descent algorithms, RMSprop stood out with an MSE of 0.006, an MAE of 0.043, and an R² of

0.579, closely followed by the Momentum Optimizer, which achieved nearly identical results.. When evaluating

evolutionary algorithms, Differential Evolution (DE) emerged as the most effective, achieving a best value of 2.9,

despite requiring an average of 45.4 iterations to reach this value. While Particle Swarm Optimization (PSO)

provided a consistent best value of 948.7 with no variability, DE's proximity to the optimal solution makes it a

preferable choice, especially when optimization accuracy is prioritized.

In summary, Mini-Batch Gradient Descent, RMSprop, and BFGS/L-BFGS were identified as the top-performing

algorithms in their respective categories, demonstrating significant improvements in model accuracy and

convergence speed. The study's results, supported by numerical performance evaluations, provide valuable insights

for researchers and practitioners, contributing to the ongoing advancements over the fields of ML and DL.

References

[1] Training K. Karthick Department of Electrical and Electronics Engineering, GMR Institute of Technology,

Rajam - 532127, Andhra Pradesh, India, “Comprehensive Overview of Optimization Techniques in

Machine Learning” Control Systems and Optimization Letters, Vol. 2, No 1, 2024

[2] Networks Ruslan Abdulkadirov, Pavel Lyakhov and Nikolay Nagornov, “Survey of Optimization

Algorithms in Modern Neural” Mathematics 2023, 11, 2466. https://doi.org/10.3390/math11112466

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-14 Volume-1, Issue-2, June 2024 available at www.pijet.org P a g e | 189

[3] Haiqing Li, Chairun Nasirin c , Azher M. Abed d , Dmitry Olegovich Bokov e,f , Lakshmi Thangavelug ,

Haydar Abdulameer Marhoon, Md Lutfor Rahman, ” Optimization and design of machine learning

computational technique for prediction of physical separation process”, 1878-5352 2022 Published by

Elsevier B.V. on behalf of King Saud University

[4] Raniah Zaheer Lecturer Department of CS, Najran University, Humera Shaziya Assistant Professor

Informatics, Nizam College Osmania University, “A Study of the Optimization Algorithms in Deep

Learning”, International Conference on Inventive Systems and Control (ICISC-2022)

[5] L´eon Bottou, Frank E. Curtis‡ Jorge Nocedals, Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao

“Optimization Methods for Large-Scale Machine Learning” Journal of Machine Learning Research, vol.

18, 2021.

[6] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao “A Survey of Optimization Methods from a Machine

Learning Perspective”, arXiv :1906.06821

[7] Xiaolong Li;Feng Feng;Shuxia Yan;Wei Zhang;Qi-Jun Zhang, ”Simulation-Inserted Optimization of Four-

Order Waveguide Filter Using Combined Quasi-Newton Method With Lagrangian Method” 2023 IEEE

MTT-S International Conference

[8] Optimization for Machine Learning by Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright &

Optimization for Machine Learning and Machine Learning for Optimization by Rachid Chelouah, Patrick

Siarry

[9] Carmina Fjellström,Kaj Nyström, “Deep learning, stochastic gradient descent and diffusion maps”

[10] Haobo Qi,Feifei Wang &Hansheng Wang, “Statistical Analysis of Fixed Mini-Batch Gradient Descent

Estimator”

[11] David Shulman, Department of Chemical Engineering, Ariel University, Ariel, Israel 407000 vol. 18, 2023.

https://arxiv.org/abs/1906.06821
https://ieeexplore.ieee.org/author/37085355706
https://ieeexplore.ieee.org/author/37075879800
https://ieeexplore.ieee.org/author/37085636945
https://ieeexplore.ieee.org/author/37275873300
https://ieeexplore.ieee.org/document/10202418/
https://ieeexplore.ieee.org/document/10202418/
https://ieeexplore.ieee.org/xpl/conhome/10202212/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10202212/proceeding
https://vim.ustc.edu.cn/_upload/article/files/86/7f/bf0a1fff499994d5fd8d17a7b5d5/c0feccd1-f58a-40ca-8e2e-720d276be00c.pdf
https://vim.ustc.edu.cn/_upload/article/files/86/7f/bf0a1fff499994d5fd8d17a7b5d5/c0feccd1-f58a-40ca-8e2e-720d276be00c.pdf

