
www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 82

Bridging Programming Languages: A Comprehensive

Survey of Code Translation Techniques

Shivam Khetan 1, Rupesh Kharche 2, Vaishnavi Deshmukh 3, Nainish Gharat 4, Vishal Jaiswal 5

1Student, SCTR’s Pune Institute of Computer Technology, (IT), Pune, Maharashtra, India,

shivkhetan18@gmail.com

2Student, SCTR’s Pune Institute of Computer Technology, (IT), Pune, Maharashtra, India,

rupeshkharche2003@gmail.com

3Student, SCTR’s Pune Institute of Computer Technology, (IT), Pune, Maharashtra, India,

vaishnavid262003@gmail.com

4Student, SCTR’s Pune Institute of Computer Technology, (IT), Pune, Maharashtra, India,

nainishgharat7@gmail.com

5Assistant Professor, SCTR’s Pune Institute of Computer Technology, (IT), Pune, Maharashtra, India,

vrjaiswal@pict.edu

Abstract

This paper presents a comprehensive survey of various code translation approaches, including rule-based

systems, syntax and semantic-based methods, and state-of-the-art neural machine translation (NMT) models.

We explore the evolution of these techniques, comparing the strengths and limitations of each approach. In

addition, we delve into the performance evaluation metrics used in the domain, such as BLEU, CodeBLEU,

CrystalBLEU, and CodeScore, which provide a multifaceted view of translation accuracy, syntactic

correctness, and semantic preservation. Moreover, this survey highlights several prominent models that have

advanced the field, including TransCoder, CodeT5, CodeBERT, GraphCodeBERT, TreeBERT, and RoBERTa.

Each of these models introduces novel mechanisms for handling the complexities of code structure, context, and

intent during translation.

Keywords: Code Translation, Neural Machine Translation (NMT), Code Representation, Syntax and Semantics,

Code Evaluation Metrics, Transformer Models, Deep Learning.

1. Introduction

In software development, each programming language offers unique advantages and challenges, including

differences in complexity, learning curve, memory management, and the level of abstraction it provides.

High-level programming languages are easier to learn and use, and they allow for faster development.

However, low-level languages provide more control over a computer’s hardware and can be used to create faster

and more efficient programs. As technology evolves, the demand for new languages and frameworks increases,

driven by the need for more efficient, scalable, and secure solutions. As newer technologies and programming

languages emerge, support for older ones decreases. This means businesses should update their outdated code

to use modern platforms. However, manual code migration is a labor-intensive process, requiring substantial

time, expertise, and resources to ensure that functionality is preserved across different programming

environments. In recent years, advancements in artificial intelligence have opened new avenues for automating this

process, allowing AI models to assist in translating code between languages with greater accuracy and

efficiency, thereby reducing the dependency on human labor and expediting code migration tasks.

Traditionally, before the advent of AI, code translation relied primarily on trans compilers or specialized compilers,

which offered limited and often one way translation between specific programming languages. These tools

typically operated on syntactic or semantic rules, which were manually crafted for each language pair. While

this method allowed for some degree of automation, it was far from optimal in terms of flexibility, adaptability,

mailto:shivkhetan18@gmail.com
mailto:rupeshkharche2003@gmail.com
mailto:vaishnavid262003@gmail.com
mailto:nainishgharat7@gmail.com
mailto:vrjaiswal@pict.edu

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 83

and accuracy. Each new language feature or update required manual intervention, with new rules and

transformations needing to be explicitly coded, resulting in rigid systems. However, with the integration of

artificial intelligence, particularly in the form of rule-based, statistical, and neural machine translation

techniques, the landscape has transformed. AI driven approaches now allow for more flexible, dynamic, and

accurate code translation across a variety of languages, significantly reducing the effort needed to handle

complex syntax and semantics while improving overall translation quality.

2. Related Work

In the field of code translation, various evaluation metrics have been developed to measure the effectiveness and

quality of translation models. Accuracy remains one of the fundamental metrics, focusing on how closely the

translated code matches the expected output. BLEU (Bilingual Evaluation Understudy) has been widely

adopted from natural language processing (NLP) to assess the fluency and overlap between generated and

reference sequences, though its direct application to code often lacks the necessary precision. As a result,

specialized metrics like CodeBLEU have been introduced, incorporating both syntactic and semantic features

of code to better capture correctness. Similarly, CrystalBLEU aims to provide a more nuanced evaluation by

measuring both structural similarity and logical equivalence between code snippets. CodeScore extends these

metrics further by assessing code quality based on execution results, evaluating how well the generated code

performs its intended functionality. Exact Match, another commonly used metric, compares the entire structure

of the code to ensure an identical replication. These metrics, together with others like Edit Distance and

Computational Cost, have collectively advanced the evaluation of translation systems, offering a more

comprehensive analysis of their capabilities and limitations.

Recent advancements in code translation have introduced several powerful models that leverage deep learning

architectures to improve translation accuracy and semantic understanding. GraphCodeBERT and CodeBERT,

both extensions of BERT models for programming languages, use pretraining on large code corpora and data

flow graphs to capture the syntactic and semantic structure of code. TreeBERT builds on this approach by

incorporating tree-based representations of abstract syntax trees (ASTs) to further enhance the understanding

of hierarchical code structures. CodeT5, an encoder-decoder model, focuses on identifier aware code

understanding and generation, effectively handling complex code tokens and improving translation fluency.

Another notable model, TransCoder, employs unsupervised machine translation techniques for multilingual

code translation, bridging the gap between different programming languages without parallel datasets. Beyond

these, models like code2seq generate sequences from code’s structured representations, proving particularly

effective for tasks like code summarization and function name prediction. These models represent the forefront

of research in code translation, significantly improving over traditional methods by integrating deep neural networks

and more advanced code representations. Their performance has been validated against benchmarks like BLEU,

CodeBLEU, and CrystalBLEU, demonstrating improvements in both accuracy and scalability across various

programming languages.

3. Models Used in this research work

• CodeBERT is an extension of the BERT model, specifically designed for programming languages. It

is pretrained on a large corpus of both natural language and source code from multiple programming

languages such as Python, Java, JavaScript, and more. The model employs masked language modeling

and replaces token prediction objectives to learn both the natural language and code semantics. The paper

demonstrates its effectiveness in code search, code documentation generation, and other downstream

tasks. [1].

• GraphCodeBERT extends CodeBERT by incorporating data flow information, which captures the

relationships between variables in the code. This data flow representation enhances the model’s ability to

understand both syntactic and semantic structure in source code, making it more effective for code

understanding and generation tasks, including code completion, code summarization, and code search. The

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 84

authors show improved performance compared to previous models through multiple benchmarks. [2].

• TreeBERT introduces a tree-based representation of abstract syntax trees (ASTs) to pre-train a

model that captures the hierarchical nature of programming languages. By leveraging the structure of

ASTs, TreeBERT effectively models syntactic relationships in code, making it particularly useful for

tasks like code completion and defect detection. The hierarchical structure allows TreeBERT to better

understand the context and organization of code elements [3].

• CodeT5 is a unified encoder-decoder model pre-trained on a variety of programming languages

with a focus on improving the understanding of complex code tokens, particularly identifiers (variable

and function names). CodeT5 uses a denoising sequence-to-sequence framework, which includes tasks

like masked token prediction and identifier aware code understanding to improve the fluency of

translation and generation tasks [4].

• TransCoder is an unsupervised machine translation model that translates between programming

languages (e.g., C++, Python, and Java) without the need for parallel datasets. Using techniques like

denoising auto-encoding and back- translation, TransCoder captures the underlying semantics of code in

different languages. The model bridges the gap between different programming languages, showing high

performance even in the absence of parallel training data. [5].

• Code2seq is a neural network model designed to generate sequences (e.g., method names, function

summaries) from structured representations of code, such as paths in abstract syntax trees (ASTs). The

model extracts syntactic information from ASTs and generates target sequences in a supervised learning

setup. The paper shows how this approach can be effective for tasks like method name prediction and code

summarization, yielding competitive results compared to traditional models. [6].

Table 1. Comparison of Models for Code-Transformation

Model Architecture Dataset Tasks Key Features

CodeBERT [1] Transformer-

based, BERT

CodeSearchNet Code search, code

completion

Bidirectional language

representation for code and

natural language; focuses on

textual and code tokens.

GraphCodeBERT

[2]

Transformer +

Graph Neural Net

CodeSearchNet

(with graph-

structured data)

Code understanding,

code summarization

Exploits both sequence and

graph-structure

representations of code for

improved understanding.

TreeBERT [3] Transformer +

Tree Structure

Custom dataset

with tree

representations

Code generation,

translation

Leverages the abstract

syntax tree (AST)

representation of code to

model hierarchical structure.

CodeT5 [4] Encoder-Decoder

(T5-style)

CodeSearchNet,

CodeXGlue,

and others

Code

summarization,

translation

Unified text-to-code and

code-to-text generation;

leverages task-specific

prefix tokens.

TransCoder [5] Transformer-

based

Monolingual

and

multilingual

code from

TheStack

Code translation,

generation

Focuses on cross-language

translation for programming

languages; unsupervised

training.

code2seq [6] Encoder-Decoder

(sequence-based)

Path-based

representations

of ASTs

Code

summarization,

representation

Models source code as

sequences of paths in ASTs,

lightweight and task

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 85

learning specific.

4. Evaluation Metrics

• Accuracy remains a foundational metric for code translation evaluation, measuring how closely the

translated code matches the expected output. It provides a simple but effective way to gauge the

correctness of a model by comparing the generated code against a reference solution. Accuracy is

particularly useful for tasks where an exact solution is expected, such as when translating code from

one language to another or generating a specific functionality. Accuracy as a metric for code

translation does not have a single originating paper but is widely discussed in the literature on machine

translation and code generation models, such as in CodeBERT [1].

• BLEU is a widely adopted metric in natural language processing (NLP) that has been applied to code

translation. It measures how many n-grams (sequences of n words or tokens) from the translated code

match the reference code. However, BLEU’s application to code has limitations because it focuses on

surface-level token matches rather than deeper syntactic or semantic correctness. This often leads to issues

when evaluating programming languages, where syntax and logic correctness are more crucial [7].

BLEU is explained in Algorithm 1.

• CodeBLEU is a specialized evaluation metric designed to overcome BLEU’s limitations in code

translation by incorporating code-specific syntactic and semantic features. It evaluates code quality

by not only comparing token overlap but also assessing syntax, data flow, and logic equivalence between

the generated and reference code. This provides a more holistic evaluation of how well the model

understands and generates code. [8]. CodeBLEU is explained in Algorithm 2.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 86

• CrystalBLEU extends the BLEU and CodeBLEU metrics by focusing on structural similarity and

logical equivalence in code. It measures how well the generated code aligns with both the structure and

functionality of the reference solution, ensuring that even if the syntax varies, the translated code produces

the correct result. CrystalBLEU helps capture subtle nuances in code correctness, such as logical flow

and function equivalence, which are often missed by traditional metrics. Citation: CrystalBLEU is a

more recent advancement and is often referenced in literature on code translation and generation

systems that address structural and logical accuracy, such as in CodeT5 (Wang et al., 2021). [9].

CrystalBLEU is explained in Algorithm 3.

• CodeScore is an evaluation metric that goes beyond syntactic and semantic similarity by assessing

the quality of code based on its execution results. It evaluates how well the generated code performs

its intended functionality, thus focusing on the operational correctness of the output rather than just token

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 87

or structure matching. This metric is particularly important in real-world scenarios where functional

correctness is the goal. Citation: CodeScore is discussed in various works on functional correctness in code

generation, including in unsupervised machine translation models like TransCoder [10]. CodeScore is

explained in Algorithm 4.

Table 2. Comparison of Evaluation Metrics for Code-Related Tasks

Metric Description Applications Key Features Limitations

BLEU [7] A text-based metric

originally designed for

evaluating machine

translation.

Code

summarization

and translation

Measures n-gram

overlap; insensitive to

code-specific syntax or

semantics.

Struggles with code-specific

syntax and semantics, not

robust to different valid

representations of code.

CodeBLEU

[8]

A code-specific

extension of BLEU

that incorporates

syntax and semantic

matching.

Code

generation,

translation

Combines n-gram

matching with abstract

syntax tree (AST) and

data flow information.

Computationally heavier

than BLEU; dependent on

AST quality and parser

availability.

CrystalBLE

U [9]

An evaluation metric

that uses crystal

structures of code to

measure accuracy.

Code

completion,

generation

Leverages code

structural properties and

context awareness to

improve evaluation

robustness.

Relatively new; lacks

widespread adoption and

standard benchmarks for

comparison.

CodeScore

[10]

A composite metric

that evaluates

functional correctness

and semantic

equivalence.

Code

generation,

translation

Incorporates functional

testing to verify that

generated code executes

correctly, in addition to

BLEU-like scoring.

Requires running code,

which can be resource-

intensive and error-prone for

certain languages.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 88

Table 3. Summary of Key Research Related to Neural Machine Translation

Authors Focus Area Algorithm Summary Key Features

R. Lachaux

et al. [5]

Code

translation

Transformer Proposes an unsupervised approach

for programming language translation

using pre-trained models and fine-

tuning techniques.

Removes reliance on

parallel datasets;

leverages monolingual

data.

M. Roziere

et al. [11]

Unsupervised

code translation

Unit tests +

Transformers

Incorporates automated unit tests as a

proxy for functional correctness in

unsupervised translation of

programming languages.

Functional validation

through automated

testing.

X. Zhang et

al. [12]

Multilingual

code translation

Benchmarking Presents a benchmark for evaluating

multilingual code translation models

across different programming

languages.

Benchmarks multiple

languages; extensive

dataset.

K. Srikar

and M. E.

Rhazal [13]

AI-based code

translation

Neural

Networks

Explores AI methods for converting

programming languages with focus on

performance, accuracy, and

challenges in real-world scenarios.

Practical application of

AI techniques for code

translation.

H. Ahmad et

al. [14]

Java-Python

code translation

Parallel

corpus +

Neural

Networks

Develops AVATAR, a parallel corpus

tailored for Java and Python

translation tasks, with attention on

syntactic and semantic equivalence.

Focused on Java-

Python parallel data;

aligns semantic and

syntactic structures.

J. Chen et al.

[15]

Code

translation

(Python to

Java)

Adaptive

source code

converter

Introduces an algorithm-adaptive

approach to automate Python-Java

code translation based on program

structure.

Adapts based on

algorithmic structures

in the source code.

F. Guo et al.

[2]

Code

representation

pre-training

Graph-based

Transformer

Enhances pre-training of code

representations by modeling the data

flow in source code.

Incorporates data flow

information in pre-

training.

W. Lu et al.

[16]

Benchmark for

code

understanding

and generation

Multiple ML

models

Presents CodeXGLUE, a benchmark

dataset with tasks spanning code

understanding and generation,

fostering reproducibility in ML-based

code analysis research.

Extensive benchmark

covering diverse tasks

like code

summarization,

translation, and

synthesis.

Z. Chen et

al. [17]

Program

translation

Tree-to-Tree

Neural

Network

Develops a novel neural network

architecture that translates source code

by modeling the tree structures of

programming languages.

Utilizes tree-based

syntax for program

translation.

L. Zhu et al.

[3]

Code

representation

Tree-based

Transformer

Proposes a tree-based pre-training

model for better programming

language understanding by leveraging

hierarchical structures.

Incorporates

hierarchical tree-based

syntax in pre-training.

A. Alon et

al. [6]

Code

summarization

Sequence

generation

Converts abstract syntax trees (ASTs)

into sequences to generate natural

language summaries of source code.

Uses AST paths for

summarization;

effective for function-

level descriptions.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 89

Y. Feng et

al. [18]

Code

generation

Structural

language

models

Combines language models with

structural code analysis to generate

code across multiple programming

languages.

Cross-language code

generation with

structural awareness.

M. Fadel et

al. [19]

Pre-training for

code

understanding

and generation

Unified pre-

training

Proposes a single pre-training

framework for both program

understanding and code generation

tasks.

Combines multiple

programming tasks

into a unified pre-

training model.

S. Zhao et

al. [10]

Code

evaluation

Execution-

based scoring

Introduces a method to evaluate

generated code by learning from its

execution behavior.

Focuses on execution

semantics for

evaluation metrics.

L. Wang et

al. [9]

Code similarity BLEU-based

metric

Proposes CrystalBLEU, a code

similarity metric that balances

efficiency and precision for evaluating

code translations.

Efficient and precise

similarity scoring for

code comparison.

Y. Artetxe et

al. [20]

Unsupervised

natural

language

translation

Neural

machine

translation

(NMT)

Pioneers unsupervised neural machine

translation by leveraging monolingual

corpora and language similarity

features.

Focus on unsupervised

methods; foundational

to later work in NMT.

S. Kanade et

al. [21]

Multilingual

program

translation

Multilingual

training

Utilizes multilingual code snippets to

train translation models for cross-

language program understanding and

generation.

Multilingual training

with parallel corpora.

F. Patil and

D. Joshi [22]

Statistical

machine

translation for

code migration

Statistical MT Proposes lexical-based statistical

methods for migrating code between

programming languages.

Combines lexical

features with statistical

modeling.

R. Liu et al.

[23]

Multilingual

code translation

Parallel

corpus

Introduces XTest, a corpus of code

translations augmented with test cases

to validate translation quality.

Includes test cases for

validation of

translations.

C. Chen and

F. Chen [24]

Code

evaluation

BLEU score

analysis

Analyzes the suitability of BLEU

scores for evaluating programming

code migration.

Highlights limitations

of BLEU in the

context of code

evaluation.

Y. Wang et

al. [4]

Pre-training for

code

understanding

and generation

Transformer

(CodeT5)

Proposes CodeT5, a model that

incorporates identifier awareness to

improve pre-training for code-related

tasks.

Identifier-aware design

for better code

understanding and

generation.

A. Vaswani

et al. [25]

Foundation of

Transformer

architecture

Transformer Introduces the Transformer model, a

novel neural network architecture that

replaces recurrence with self-attention

mechanisms.

Pioneered self-

attention; basis for

many later NLP and

code-related models.

M. Johnson

et al. [26]

Multilingual

natural

language

translation

Neural

machine

translation

Explores multilingual translation

models that can translate between a

large number of language pairs

without explicit parallel data.

Scales translation to

many languages using

a unified model.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 90

P. Schultz

and B.

Wong [27]

Hybrid

translation

(rule-based +

neural models)

Hybrid model

(rule-based +

neural NMT)

Combines rule-based and neural

translation approaches for enhanced

performance in niche translation tasks.

Leverages strengths of

both rule-based and

neural methods.

Z. Feng et

al. [1]

Pre-training for

code

understanding

and generation

Transformer

(CodeBERT)

Extends BERT for programming

languages by leveraging bimodal data

(code and natural language).

Pre-trained on code-

natural language pairs

for diverse tasks.

K. Papineni

et al. [7]

Machine

translation

evaluation

BLEU metric Proposes BLEU, a metric for

evaluating the quality of machine-

translated text by comparing it to

reference translations.

Widely used metric in

machine and code

translation tasks.

S. Ren et al.

[8]

Code

evaluation

CodeBLEU

metric

Introduces CodeBLEU, an evaluation

metric that accounts for syntactic,

semantic, and structural properties of

code.

Tailored for evaluating

programming code

synthesis

.

5. Tools and Frameworks

Several tools have emerged to support code translation, including both traditional and AI-powered systems:

• Babel: Babel is a popular JavaScript transpiler that enables developers to use modern JavaScript features,

such as ES6+ syntax, in environments that may only support older versions of the language. Babel works

by parsing JavaScript code and converting it into a backwards-compatible version, ensuring that new

features like arrow functions, async/await, and other modern syntax can be utilized without breaking

compatibility. It plays a critical role in modern web development by facilitating code translation between

JavaScript versions and allowing for seamless use of cutting- edge features. Citation: Babel does not

have a specific academic paper associated with it, but it is widely documented in web development

literature.

• Haxe: Haxe is a cross-platform toolkit that supports source-to-source translation between multiple

programming languages. It provides a high-level programming language that can be compiled into several

target languages such as JavaScript, Python, C++, and more. Haxe also offers a standard library that can be

used across all supported platforms, making it a versatile solution for cross-platform development. Haxe’s

powerful type system and flexibility make it an effective tool for creating software that runs across

diverse environments without major changes to the source code.

• TransCoder: TransCoder is a neural transcompiler developed by Facebook that uses unsupervised

machine learning to translate between different programming languages, including Python, C++, and Java.

Unlike traditional transpilers, TransCoder does not rely on parallel datasets for training. Instead, it employs

unsupervised methods like denoising autoencoders and back-translation to learn the semantics of different

languages, allowing it to generate accurate translations even without explicitly aligned examples. The

model represents a significant leap in code translation by handling multiple languages in an unsupervised

manner. [5]

6. Challenges in Code Translation

Despite significant advancements in automated code translation, many challenges persist that hinder seamless and

reliable conversions between programming languages. These challenges primarily stem from differences in

syntax, semantics, platform-specific constraints, and the varying ecosystems associated with each language.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 91

A. Handling Language-specific Idioms

Programming languages often feature unique idioms, syntactic constructs, and conventions that lack direct

equivalents in other languages. For example, Python’s list comprehensions provide a concise and readable

method for manipulating collections but translating them into Java may necessitate the use of verbose loops

or other workarounds, which can compromise readability and conciseness. This challenge is underscored in

research such as that by Roziere et al. (2021) [11], which highlights the difficulty of capturing idiomatic

expressions across different languages. Effectively translating these idioms without introducing errors or

significantly altering the code’s structure is a complex task that frequently requires advanced techniques like

unsupervised machine translation models (Lachaux et al., 2020) [5], which learn mappings without relying on

parallel training data.

B. Semantic Preservation

Maintaining the semantic integrity of the original code during translation is both crucial and challenging.

Programming languages often vary in their implementations of core concepts such as memory management,

error handling, and type systems. For instance, the weakly typed nature of Python presents difficulties when

translating to statically typed languages like Java or C++. Ahmad et al. (2020) introduce the AVlel corpus for

program translation, which aims to address this issue by providing Java-Python translation examples and

emphasizing the challenges of ensuring semantic equivalence, particularly regarding differences in exception

handling and variable scoping.

Additionally, subtle runtime differences can result in discrepancies in performance or correctness after translation.

Tools like CrystalBLEU (Wang et al., 2021) have been developed to assess the semantic fidelity of the

original and translated code, going beyond syntax to focus on preserving the functional behavior of the code.

However, fully capturing the nuances of semantic equivalence remains an ongoing research challenge,

especially as the complexity of code increases.

C. Performance Optimization

Different programming languages are optimized for specific use cases, and translating code can lead to

performance degradation if the optimization patterns of the target language are not effectively utilized. Chen et

al. (2020) highlight this issue in their study on Python-to-Java translation, noting that certain Python constructs,

such as dynamic typing and duck typing, can be computationally expensive to replicate in Java, potentially

causing performance bottlenecks. Additionally, Zhang et al. (2021) emphasizes the importance of considering

both the efficiency and idiomatic correctness of translated code in their work on CodeTransOcean, as direct

translations may yield code that is syntactically correct but inefficient in the target language.

Moreover, pre-trained models like CodeBERT and GraphCodeBERT aim to enhance the quality of code

translations by learning patterns from large codebases. However, the challenge of performance tuning often

still necessitates manual intervention, as these models may not fully optimize the translated code for the

specific characteristics of the target language.

D. Cross-platform Compatibility

Languages often depend on platform-specific libraries, frameworks, and APIs, which makes cross-platform

code translation a particularly challenging task. This difficulty is heightened when translating code between

environments that have different system architectures and conventions. For instance, while both Java and C#

operate in managed environments (the JVM and CLR, respectively), their standard libraries and system calls

differ, complicating straightforward translations. Roziere et al. (2021) [11] highlights that automated unit tests

can help ensure some level of compatibility, but challenges persist when dealing with platform specific

libraries or system calls.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 92

Additionally, Liu et al. (2021) introduce XTest, a parallel corpus equipped with test cases specifically

designed for multilingual code translations. Their approach advocates using these test cases to verify that

the translated code functions correctly across various platforms. However, achieving full cross-platform

compatibility may necessitate further adaptations, such as incorporating platform-agnostic libraries or rewriting

platform-specific code segments.

7. Comparative Analysis of Tools

The landscape of code translation tools is diverse, encompassing everything from traditional rule-based

systems to modern neural models. Each approach has its own strengths and limitations regarding accuracy,

scalability, readability, and error handling. This section presents a comparative analysis of these tools, focusing

on key aspects such as accuracy, scalability, and debugging.

A. Accuracy and Readability

Neural models, such as TransCoder, have shown superior accuracy in translating between languages,

especially for complex pairs like Python and C++ [5]. Unlike rule-based systems that depend on predefined

translation rules, neural models learn from vast datasets, enabling them to generalize more effectively to

previously unseen code structures. Models like CodeBERT [1] and GraphCodeBERT [2] excel at capturing deep

syntactic and semantic relationships, which enhances translation accuracy.

Fig. 1. BLEU Scores for Code Translation

However, a persistent challenge with these models is readability. Neural translations often yield code

that, while functional, does not adhere to the idiomatic practices of the target language. This issue is

particularly pronounced when translating between languages with fundamentally different design paradigms.

For instance, Python code translated into C++ may fail to fully utilize C++’s object-oriented features,

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 93

resulting in code that is syntactically correct but inefficient or awkward [5]. Manual intervention is often

necessary to refine the translated code, ensuring that the output aligns with standard coding practices in the

target language. This need for refinement is crucial for maintaining readability and adhering to idiomatic

conventions, as highlighted in Lexical Statistical Machine Translation for Language Migration in their research

on language migration. [22]

B. Scalability and Speed

Scalability is a significant advantage of neural models. Traditional rule-based systems, while effective for

small-scale tasks and specific language pairs, struggle with large datasets and complex codebases. These systems

depend on predefined transformation rules, which can become unwieldy as code complexity, or the number of

supported languages increases. In contrast, neural models like TransCoder [5] and CodeT5 [4] can manage

large-scale datasets by learning generalizable representations of code, allowing them to scale more effectively

across different languages and extensive codebases.

Fig. 2. Training Time vs Model Architecture

However, the scalability of neural models does come with a trade-off in terms of speed. As the model size

increases, so does the inference time. Larger models typically exhibit longer inference times, particularly when

processing complex, multi-language datasets like those found in CodeTransOcean [12]. While rule-based

systems may yield quicker results for smaller tasks, neural models excel in scenarios where scalability and

flexibility take precedence over execution speed.

Efforts like CodeXGLUE have created extensive benchmark datasets to enhance the scalability of neural

translation models, aiming to mitigate speed trade-offs by optimizing architecture and inference

algorithms [16]. Nevertheless, additional optimizations are necessary to minimize computational overhead for

real-time or near real-time translation tasks.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 94

C. Error Handling and Debugging

Error handling remains a significant challenge for AI-powered code translators. While neural models excel at

generating syntactically correct code, they often struggle with ensuring the correctness of error handling

mechanisms, particularly when translating between languages that employ different paradigms for managing

exceptions. For instance, converting error-prone code from Python, which heavily relies on exceptions, to

C++, which utilizes more explicit error handling, can introduce subtle bugs that are difficult to track down.

AI-generated code might compile successfully, yet still contain subtle semantic errors or issues related to

platform- specific behaviors. This challenge is underscored by XTest, which offers a multilingual corpus with

test cases designed to ensure the correctness of translated code. However, debugging AI-generated code

frequently requires substantial manual intervention, especially for complex tasks or when working with

unfamiliar language pairs. [23] Hybrid approaches that combine rule-based systems or human oversight with

neural models are showing promise in enhancing error handling accuracy. For example, [27] suggests a hybrid

model that merges neural machine translation with classification-based rules, allowing for more reliable code

translation and reducing the risk of runtime errors. Additionally, the implementation of automated unit tests,

as explored by, provides a means to verify the correctness of translated code. Nevertheless, these methods

are not foolproof and often depend on the quality and comprehensiveness of the test cases employed.

8. Recent Advances

A. Unsupervised Machine Learning

Unsupervised machine learning has transformed code translation by removing the dependence on parallel corpora,

which are often limited or unavailable for many programming languages. Models like TransCoder mark a

significant advancement in this area, leveraging large, unlabeled datasets to identify syntactic and semantic

patterns across multiple programming languages. This method allows these models to generalize across languages

without needing paired examples, making them particularly adaptable to new languages that lack annotated

training data. TransCoder has effectively translated between high-level languages such as Python, C++, and

Java, showcasing the potential of unsupervised learning to scale code translation tasks across various language

pairs. [5]

Moreover, unsupervised approaches facilitate the discovery of hidden relationships between programming

languages, as demonstrated by earlier work on unsupervised neural machine translation, which provided a

foundation for applying these techniques to code translation. This adaptability is essential for broadening the

scope of automated code translation to include niche or domain-specific languages. [20]

B. AI-assisted Code Translation

AI-assisted tools like Codex, built on the GPT architecture, are making a substantial impact by facilitating

natural language-to-code translation. These models can convert plain language descriptions into code,

significantly boosting developer productivity by automating repetitive tasks and enabling rapid prototyping of

new features. For instance, Codex allows developers to articulate desired functionality in everyday language,

which is then transformed into executable code. This capability is changing the way developers engage with

codebases, lowering the barrier to coding proficiency and speeding up task completion.

Despite the impressive potential of models like Codex and other transformer-based architectures, challenges

remain in generating complex or highly idiomatic code without errors. [25] Nonetheless, the advancements in

translating natural language to code open up exciting opportunities for the future of human-computer

interaction, where AI could serve as a valuable co-pilot for developers. [12]

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 95

C. Benchmarking and Datasets

The development of standardized benchmarking tools has been crucial in advancing code translation models.

Tools like CodeTransOcean offer a comprehensive multilingual benchmark specifically designed to evaluate the

performance of these models across various languages. These benchmarks measure important metrics such as

accuracy, efficiency, readability, and semantic preservation, providing researchers with a unified framework

for comparing different models.

In addition to CodeTransOcean, datasets like CodeXGLUE and XTest have also been created to enhance the

evaluation of code translation models. These resources are vital for monitoring the progress of AI-driven

code translation, as they provide standardized, real-world test cases that ensure models perform effectively not

only in controlled environments but also in actual development scenarios.

Fig. 3. Performance vs Dataset Size

The graph illustrates the performance of various code translation models—CodeBERT, GraphCodeBERT,

TreeBERT, CodeT5, and TransCoder—measured by the CodeBLEU score across different dataset sizes (50K,

100K, and 1M samples). The results indicate that all models improve as dataset size increases, with CodeBERT

consistently achieving the highest performance. GraphCodeBERT, TreeBERT, and CodeT5 also show strong

performance, with TreeBERT and CodeT5 closely competing. TransCoder, while improving with dataset size,

generally lags behind the other models. This suggests that larger datasets contribute significantly to translation

accuracy, and transformer-based models, particularly CodeBERT, benefit the most from increased data availability.

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 96

Table 4. Summary of Datasets Used

9. Future Directions

A. Multilingual Models

The future of code translation is headed toward the creation of truly multilingual models that can efficiently

handle multiple programming languages within a single framework. While current models like TransCoder

and CodeBERT can translate between specific pairs of languages, future research aims to expand their

capabilities to support a broader range of programming languages simultaneously. This transition to

multilingual models will enhance software interoperability, enabling developers to work across various

languages and platforms more effectively.

Like advancements in massively multilingual neural machine translation, the objective is to develop models that can

learn language-agnostic representations of code. [26] Such models would facilitate seamless translation

between different languages, making it easier to navigate polyglot environments where software components are

written in diverse languages. This approach will also help meet the demand for inter-language operability,

allowing systems to connect languages like Python, C++, and JavaScript without the need for manual

translation.

B. Contextual Code Translation

Future developments in code translation are expected to prioritize the integration of contextual information to

improve translation quality. Current models often treat code snippets as standalone units, but in reality, code

functions within larger projects, where factors such as coding style, project structure, and dependencies play a

vital role in creating accurate and maintainable translations. Research on models like TreeBERT is delving into

how to incorporate structural and contextual aspects of code, which could greatly enhance the relevance and

maintainability of translated outputs. [3]

Context-aware models would consider not only the syntax and semantics of the code being translated but also the

broader context of the project. This includes coding standards, third-party libraries, and architectural patterns.

Such an approach could lead to translations that are more aligned with the original developer’s intentions,

resulting in cleaner and more maintainable code.

Dataset Description Size Languages Source Purpose

CodeTransOcean

[12]

A dataset for translating

programming code between various

languages to support cross-language

code understanding.

∼50M

code

snippets

Java,

Python,

C++, etc.

Open-

source

repositories

Code

translation and

understanding

CodeSearchNet

[29]

A benchmark dataset for natural

language code search tasks, linking

code to natural language

descriptions.

∼6M

functions

Python,

Java,

JavaScript

GitHub

repositories

Code search

and retrieval

CodeXGlue [16] A comprehensive benchmark suite

for code intelligence tasks, including

code generation, translation, and

search.

20+ tasks

(∼13M

data

points)

Python,

Java, C,

JavaScript

Diverse

open-

source

projects

General code

intelligence

tasks

TheStack [30] A massive dataset of permissively

licensed source code for diverse

languages and research applications.

∼3TB of

code

350+

languages

Public

repositories

Large-scale

pretraining for

code models

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 97

C. Error Mitigation

One of the key challenges in current AI-driven code translation is the frequent introduction of errors,

particularly when handling complex or real-world applications. The future of code translation will focus heavily

on refining error mitigation techniques to ensure that the translated code is not only syntactically correct but

also maintains semantic accuracy. Tools like XTest, which generate test cases to verify the correctness of

translated code, will likely evolve further to automate the debugging process. [23] However, more advanced

methods will be needed to address edge cases and subtle differences between languages.

In addition, hybrid systems that combine neural models with human oversight or rule-based elements (Schultz and

Wong, 2021) hold potential for improving error management. These systems can leverage both the broader

patterns captured by AI models and the precision needed for specific edge cases. Future research may also

investigate the integration of automated debugging tools directly into translation models, reducing the reliance

on manual error correction and making the development process more efficient.

Fig. 4. Overview of a generalized Code Translation Pipeline

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 98

10. Conclusion

Code translation has made remarkable progress, evolving from rule-based systems to advanced AI-driven models

capable of translating complex programming languages with impressive accuracy. Models like CodeT5,

GraphCodeBERT, and CodeBERT have demonstrated their ability to achieve high BLEU scores, with

CodeT5 leading at 82.98 for Java-to-C# translation. This reflects the impact of pretraining on massive

datasets and fine-tuning for specific tasks, enabling these models to generalize better across languages.

Furthermore, performance trends observed over training epochs, as shown in BLEU score progression, highlight

the importance of extended training and hyperparameter tuning in achieving optimal results.

Despite this progress, there are challenges to address. One critical issue is preserving semantic integrity when

translating between languages with different programming paradigms. Languages like Java and C# share structural

similarities, making translation relatively straightforward, but translating between paradigmatically distinct

languages, such as Python and C++, introduces complexities like differences in type systems, runtime behavior,

and idiomatic practices. These challenges are further compounded by the need for models to account for

language-specific optimizations to produce efficient and error free code. Numerical evidence from various

studies also points to the significance of dataset size, with larger datasets yielding better performance; for

instance, BLEU and CodeBLEU scores improved consistently as datasets expanded from 50K to 1M samples.

Looking ahead, future research in code translation will likely focus on developing more adaptable and

context-aware models. Unsupervised systems like TransCoder and AI tools like Codex have already shown

promising results in generalizing across languages without requiring parallel datasets, even translating natural

language into executable code. However, advancements are needed to incorporate contextual elements like project

structure and coding style, ensuring that translated code is not only accurate but also maintainable and

idiomatic. The ongoing goal will be to reduce human intervention by enhancing accuracy, preserving semantic

integrity, and delivering reliable, real-world solutions for the increasing demands of cross-language software

development.

References

[1] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, and L. Shou, “CodeBERT: A Pre-Trained

Model for Programming and Natural Languages,” in Findings of the Association for Computational

Linguistics: EMNLP 2020.

[2] F. Guo, J. Ren, and X. Zhao, “GraphCodeBERT: Pre-training Code Representations with Data Flow,”

in Proceedings of the 29th ACM International Conference on Information and Knowledge

Management (CIKM), 2020.

[3] L. Zhu, Y. Wang, and L. Li, “TreeBERT: A Tree-Based Pre-Trained Model for Programming

Language,” in Proceedings of the 2021 Conference on Natural Language Processing and Software

Engineering (NLSE), 2021.

[4] Y. Wang, Y. Liu, and X. Lu, “CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models

for Code Understanding and Generation,” in Proceedings of the 2021 Annual Conference on Neural

Information Processing Systems (NeurIPS), 2021.

[5] R. Lachaux, M. Roziere, B. Piwowarski, and N. Usunier, “Unsupervised Translation of Programming

Languages,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2020.

[6] A. Alon, O. Levy, E. Yahav, and S. R. Chatterjee, “code2seq: Generating Sequences from Structured

Representations of Code,” in Proceedings of the 7th International Conference on Learning

Representations (ICLR), 2019.

[7] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: A Method for Automatic Evaluation of

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 99

Machine Translation,” in Proceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL), 2002.

[8] S. Ren, D. Lu, Q. Jin, C. Jiang, and M. R. Lyu, “CodeBLEU: A Method for Automatic Evaluation of

Code Synthesis,” in Association for the Advancement of Artificial Intelligence, 2020.

[9] L. Wang, Y. Feng, and Z. Lin, “CrystalBLEU: Precisely and Efficiently Measuring the Similarity of

Code,” in Proceedings of the 43rd International Conference on Software Engineering, 2021.

[10] S. Zhao, J. Xu, and J. Zhang, “CodeScore: Evaluating Code Generation by Learning Code Execution,”

in Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), 2021.

[11] M. Roziere, R. Lachaux, L. Chanussot, and G. Lample, “Leveraging Automated Unit Tests for

Unsupervised Code Translation,” in International Conference on Learning Representations (ICLR),

2021.

[12] X. Zhang, Z. Wang, X. Han, Y. Liang, Z. He, and Z. Lin, “CodeTransOcean: A Comprehensive

Multilingual Benchmark for Code Translation,” in Proceedings of the 2021 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections on Programming and

Software (Onward!), 2021.

[13] K. Srikar and M. E. Rhazal, “Using Artificial Intelligence to Convert Code to Another Programming

Language,” in Journal of Software Engineering Research and Development, vol. 7, no. 4, pp. 26-35,

2021.

[14] H. Ahmad, Z. Zhang, and J. Liu, “AVATAR: A Parallel Corpus for Java-Python Program

Translation,” in Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, 2020.

[15] J. Chen, L. Li, H. Luo, and X. Zhou, “An Algorithm-adaptive Source Code Converter to Automate

the Translation from Python to Java,” in Proceedings of the 2020 IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2020.

[16] W. Lu, D. Deng, J. Chen, and G. Li, “CodeXGLUE: A Machine Learning Benchmark Dataset for

Code Understanding and Generation,” in Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing, 2020.

[17] Z. Chen, W. Zhang, and X. Xiao, “Tree-to-Tree Neural Networks for Program Translation,” in

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[18] Y. Feng, M. Guo, and Y. Zhang, “Structural Language Models for Any-Code Generation,” in

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[19] M. Fadel, J. Liu, and H. Zhang, “Unified Pre-training for Program Understanding and Generation,”

in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2021.

[20] Y. Artetxe, S. Ruder, and D. Yogatama, “Unsupervised Neural Machine Translation,” in Proceedings of

the 6th International Conference on Learning Representations (ICLR), 2018.

[21] S. Kanade, M. Sikdar, and N. Mishra, “Multilingual Code Snippets Training for Program Translation,”

in Proceedings of the 2020 Annual Conference of the Association for Computational Linguistics

(ACL), 2020.

[22] F. Patil and D. Joshi, “Lexical Statistical Machine Translation for Language Migration,” in

Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Knowledge

Engineering (AIKE), 2021.

[23] R. Liu, Y. Wang, and Q. Liu, “XTest: A Parallel Multilingual Corpus with Test Cases for Code

Translation and Its Evaluation,” in Proceedings of the 2021 Annual Meeting of the Association for

Computational Linguistics, 2021.

[24] C. Chen and F. Chen, “Does BLEU Score Work for Code Migration?,” in Proceedings of the 2021

International Conference on Software Engineering, 2021.

[25] A. Vaswani, N. Shazeer, and N. Parmar, “Attention is All You Need,” in Proceedings of the 31st

www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e | 100

International Conference on Neural Information Processing Systems (NeurIPS), 2017.

[26] M. Johnson, M. Schuster, and Q. Le, “Massively Multilingual Neural Machine Translation,” in

Proceedings of the 2017 Annual Conference of the Association for Computational Linguistics (ACL),

2017.

[27] P. Schultz and B. Wong, “Hybrid Translation with Classification: Revisiting Rule-Based and Neural

Machine Translation,” in Proceedings of the 2021 International Conference on Artificial Intelligence,

2021.

[28] L. Hernandez, M. Moya, and G. Smith, “From Rule-Based Models to Deep Learning Transformers

Architectures for Natural Language Processing and Sign Language Translation Systems: Survey,

Taxonomy and Performance Evaluation,”

[29] L. H. A. R. Yang, Z. Lu, Z. Zhang, and K. Xie, “CodeSearchNet: A Large-Scale Dataset for Code

Search and Understanding,” in Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE), 2018.

[30] S. Li, L. Wang, and D. L. Donato, “TheStack: A Multilingual Stack Overflow Dataset for Code

Understanding,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2023.

