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Abstract 

This paper presents a comprehensive survey of various code translation approaches, including rule-based 

systems, syntax and semantic-based methods, and state-of-the-art neural machine translation (NMT) models. 

We explore the evolution of these techniques, comparing the strengths and limitations of each approach. In 

addition, we delve into the performance evaluation metrics used in the domain, such as BLEU, CodeBLEU, 

CrystalBLEU, and CodeScore, which provide a multifaceted view of translation accuracy, syntactic 

correctness, and semantic preservation. Moreover, this survey highlights several prominent models that have 

advanced the field, including TransCoder, CodeT5, CodeBERT, GraphCodeBERT, TreeBERT, and RoBERTa. 

Each of these models introduces novel mechanisms for handling the complexities of code structure, context, and 

intent during translation. 

Keywords: Code Translation, Neural Machine Translation (NMT), Code Representation, Syntax and Semantics, 

Code Evaluation Metrics, Transformer Models, Deep Learning. 

1. Introduction 

In software development, each programming language offers unique advantages and challenges, including 

differences in complexity, learning curve, memory management, and the level of abstraction it provides. 

High-level programming languages are easier to learn and use, and they allow for faster development. 

However, low-level languages provide more control over a computer’s hardware and can be used to create faster 

and more efficient programs. As technology evolves, the demand for new languages and frameworks increases, 

driven by the need for more efficient, scalable, and secure solutions. As newer technologies and programming 

languages emerge, support for older ones decreases. This means businesses should update their outdated code 

to use modern platforms. However, manual code migration is a labor-intensive process, requiring substantial 

time, expertise, and resources to ensure that functionality is preserved across different programming 

environments. In recent years, advancements in artificial intelligence have opened new avenues for automating this 

process, allowing AI models to assist in translating code between languages with greater accuracy and 

efficiency, thereby reducing the dependency on human labor and expediting code migration tasks. 

Traditionally, before the advent of AI, code translation relied primarily on trans compilers or specialized compilers, 

which offered limited and often one way translation between specific programming languages. These tools 

typically operated on syntactic or semantic rules, which were manually crafted for each language pair. While 

this method allowed for some degree of automation, it was far from optimal in terms of flexibility, adaptability, 
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and accuracy. Each new language feature or update required manual intervention, with new rules and 

transformations needing to be explicitly coded, resulting in rigid systems. However, with the integration of 

artificial intelligence, particularly in the form of rule-based, statistical, and neural machine translation 

techniques, the landscape has transformed. AI driven approaches now allow for more flexible, dynamic, and 

accurate code translation across a variety of languages, significantly reducing the effort needed to handle 

complex syntax and semantics while improving overall translation quality. 

2. Related Work 

In the field of code translation, various evaluation metrics have been developed to measure the effectiveness and 

quality of translation models. Accuracy remains one of the fundamental metrics, focusing on how closely the 

translated code matches the expected output. BLEU (Bilingual Evaluation Understudy) has been widely 

adopted from natural language processing (NLP) to assess the fluency and overlap between generated and 

reference sequences, though its direct application to code often lacks the necessary precision. As a result, 

specialized metrics like CodeBLEU have been introduced, incorporating both syntactic and semantic features 

of code to better capture correctness. Similarly, CrystalBLEU aims to provide a more nuanced evaluation by 

measuring both structural similarity and logical equivalence between code snippets. CodeScore extends these 

metrics further by assessing code quality based on execution results, evaluating how well the generated code 

performs its intended functionality. Exact Match, another commonly used metric, compares the entire structure 

of the code to ensure an identical replication. These metrics, together with others like Edit Distance and 

Computational Cost, have collectively advanced the evaluation of translation systems, offering a more 

comprehensive analysis of their capabilities and limitations. 

Recent advancements in code translation have introduced several powerful models that leverage deep learning 

architectures to improve translation accuracy and semantic understanding. GraphCodeBERT and CodeBERT, 

both extensions of BERT models for programming languages, use pretraining on large code corpora and data 

flow graphs to capture the syntactic and semantic structure of code. TreeBERT builds on this approach by 

incorporating tree-based representations of abstract syntax trees (ASTs) to further enhance the understanding 

of hierarchical code structures. CodeT5, an encoder-decoder model, focuses on identifier aware code 

understanding and generation, effectively handling complex code tokens and improving translation fluency. 

Another notable model, TransCoder, employs unsupervised machine translation techniques for multilingual 

code translation, bridging the gap between different programming languages without parallel datasets. Beyond 

these, models like code2seq generate sequences from code’s structured representations, proving particularly 

effective for tasks like code summarization and function name prediction. These models represent the forefront 

of research in code translation, significantly improving over traditional methods by integrating deep neural networks 

and more advanced code representations. Their performance has been validated against benchmarks like BLEU, 

CodeBLEU, and CrystalBLEU, demonstrating improvements in both accuracy and scalability across various 

programming languages. 

 

3. Models Used in this research work 

• CodeBERT is an extension of the BERT model, specifically designed for programming languages. It 

is pretrained on a large corpus of both natural language and source code from multiple programming 

languages such as Python, Java, JavaScript, and more. The model employs masked language modeling 

and replaces token prediction objectives to learn both the natural language and code semantics. The paper 

demonstrates its effectiveness in code search, code documentation generation, and other downstream 

tasks. [1]. 

• GraphCodeBERT extends CodeBERT by incorporating data flow information, which captures the 

relationships between variables in the code. This data flow representation enhances the model’s ability to 

understand both syntactic and semantic structure in source code, making it more effective for code 

understanding and generation tasks, including code completion, code summarization, and code search. The 
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authors show improved performance compared to previous models through multiple benchmarks. [2]. 

• TreeBERT introduces a tree-based representation of abstract syntax trees (ASTs) to pre-train a 

model that captures the hierarchical nature of programming languages. By leveraging the structure of 

ASTs, TreeBERT effectively models syntactic relationships in code, making it particularly useful for 

tasks like code completion and defect detection. The hierarchical structure allows TreeBERT to better 

understand the context and organization of code elements [3]. 

• CodeT5 is a unified encoder-decoder model pre-trained on a variety of programming languages 

with a focus on improving the understanding of complex code tokens, particularly identifiers (variable 

and function names). CodeT5 uses a denoising sequence-to-sequence framework, which includes tasks 

like masked token prediction and identifier aware code understanding to improve the fluency of 

translation and generation tasks [4]. 

• TransCoder is an unsupervised machine translation model that translates between programming 

languages (e.g., C++, Python, and Java) without the need for parallel datasets. Using techniques like 

denoising auto-encoding and back- translation, TransCoder captures the underlying semantics of code in 

different languages. The model bridges the gap between different programming languages, showing high 

performance even in the absence of parallel training data. [5].  

• Code2seq is a neural network model designed to generate sequences (e.g., method names, function 

summaries) from structured representations of code, such as paths in abstract syntax trees (ASTs). The 

model extracts syntactic information from ASTs and generates target sequences in a supervised learning 

setup. The paper shows how this approach can be effective for tasks like method name prediction and code 

summarization, yielding competitive results compared to traditional models. [6]. 

 

Table 1. Comparison of Models for Code-Transformation 

Model  Architecture  Dataset  Tasks  Key Features   

CodeBERT [1] Transformer-

based, BERT 

CodeSearchNet Code search, code 

completion 

Bidirectional language 

representation for code and 

natural language; focuses on 

textual and code tokens.   

GraphCodeBERT 

[2] 

Transformer + 

Graph Neural Net 

CodeSearchNet 

(with graph-

structured data) 

Code understanding, 

code summarization 

Exploits both sequence and 

graph-structure 

representations of code for 

improved understanding.   

TreeBERT [3]  Transformer + 

Tree Structure 

Custom dataset 

with tree 

representations 

Code generation, 

translation 

Leverages the abstract 

syntax tree (AST) 

representation of code to 

model hierarchical structure.   

CodeT5 [4]  Encoder-Decoder 

(T5-style) 

CodeSearchNet, 

CodeXGlue, 

and others 

Code 

summarization, 

translation 

Unified text-to-code and 

code-to-text generation; 

leverages task-specific 

prefix tokens.   

TransCoder [5]  Transformer-

based 

Monolingual 

and 

multilingual 

code from 

TheStack 

Code translation, 

generation 

Focuses on cross-language 

translation for programming 

languages; unsupervised 

training.   

code2seq [6]  Encoder-Decoder 

(sequence-based) 

Path-based 

representations 

of ASTs 

Code 

summarization, 

representation 

Models source code as 

sequences of paths in ASTs, 

lightweight and task 
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learning specific.   

 

 

4. Evaluation Metrics 

• Accuracy remains a foundational metric for code translation evaluation, measuring how closely the 

translated code matches the expected output. It provides a simple but effective way to gauge the 

correctness of a model by comparing the generated code against a reference solution. Accuracy is 

particularly useful for tasks where an exact solution is expected, such as when translating code from 

one language to another or generating a specific functionality. Accuracy as a metric for code 

translation does not have a single originating paper but is widely discussed in the literature on machine 

translation and code generation models, such as in CodeBERT [1]. 

• BLEU is a widely adopted metric in natural language processing (NLP) that has been applied to code 

translation. It measures how many n-grams (sequences of n words or tokens) from the translated code 

match the reference code. However, BLEU’s application to code has limitations because it focuses on 

surface-level token matches rather than deeper syntactic or semantic correctness. This often leads to issues 

when evaluating programming languages, where syntax and logic correctness are more crucial [7]. 

BLEU is explained in Algorithm 1. 

• CodeBLEU is a specialized evaluation metric designed to overcome BLEU’s limitations in code 

translation by incorporating code-specific syntactic and semantic features. It evaluates code quality 

by not only comparing token overlap but also assessing syntax, data flow, and logic equivalence between 

the generated and reference code. This provides a more holistic evaluation of how well the model 

understands and generates code. [8]. CodeBLEU is explained in Algorithm 2. 
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• CrystalBLEU extends the BLEU and CodeBLEU metrics by focusing on structural similarity and 

logical equivalence in code. It measures how well the generated code aligns with both the structure and 

functionality of the reference solution, ensuring that even if the syntax varies, the translated code produces 

the correct result. CrystalBLEU helps capture subtle nuances in code correctness, such as logical flow 

and function equivalence, which are often missed by traditional metrics. Citation: CrystalBLEU is a 

more recent advancement and is often referenced in literature on code translation and generation 

systems that address structural and logical accuracy, such as in CodeT5 (Wang et al., 2021). [9]. 

CrystalBLEU is explained in Algorithm 3. 

• CodeScore is an evaluation metric that goes beyond syntactic and semantic similarity by assessing 

the quality of code based on its execution results. It evaluates how well the generated code performs 

its intended functionality, thus focusing on the operational correctness of the output rather than just token 
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or structure matching. This metric is particularly important in real-world scenarios where functional 

correctness is the goal. Citation: CodeScore is discussed in various works on functional correctness in code 

generation, including in unsupervised machine translation models like TransCoder [10]. CodeScore is 

explained in Algorithm 4.  

 

Table 2. Comparison of Evaluation Metrics for Code-Related Tasks 

Metric Description Applications Key Features Limitations   

BLEU [7] A text-based metric 

originally designed for 

evaluating machine 

translation. 

Code 

summarization 

and translation 

Measures n-gram 

overlap; insensitive to 

code-specific syntax or 

semantics. 

Struggles with code-specific 

syntax and semantics, not 

robust to different valid 

representations of code.   

CodeBLEU 

[8] 

A code-specific 

extension of BLEU 

that incorporates 

syntax and semantic 

matching. 

Code 

generation, 

translation 

Combines n-gram 

matching with abstract 

syntax tree (AST) and 

data flow information. 

Computationally heavier 

than BLEU; dependent on 

AST quality and parser 

availability.   

CrystalBLE

U [9] 

An evaluation metric 

that uses crystal 

structures of code to 

measure accuracy. 

Code 

completion, 

generation 

Leverages code 

structural properties and 

context awareness to 

improve evaluation 

robustness. 

Relatively new; lacks 

widespread adoption and 

standard benchmarks for 

comparison.   

CodeScore 

[10] 

A composite metric 

that evaluates 

functional correctness 

and semantic 

equivalence. 

Code 

generation, 

translation 

Incorporates functional 

testing to verify that 

generated code executes 

correctly, in addition to 

BLEU-like scoring. 

Requires running code, 

which can be resource-

intensive and error-prone for 

certain languages.   
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Table 3. Summary of Key Research Related to Neural Machine Translation 

Authors Focus Area Algorithm Summary Key Features   

R. Lachaux 

et al. [5] 

Code 

translation 

Transformer Proposes an unsupervised approach 

for programming language translation 

using pre-trained models and fine-

tuning techniques. 

Removes reliance on 

parallel datasets; 

leverages monolingual 

data.   

M. Roziere 

et al. [11] 

Unsupervised 

code translation 

Unit tests + 

Transformers 

Incorporates automated unit tests as a 

proxy for functional correctness in 

unsupervised translation of 

programming languages. 

Functional validation 

through automated 

testing.   

X. Zhang et 

al. [12] 

Multilingual 

code translation 

Benchmarking Presents a benchmark for evaluating 

multilingual code translation models 

across different programming 

languages. 

Benchmarks multiple 

languages; extensive 

dataset.   

K. Srikar 

and M. E. 

Rhazal [13] 

AI-based code 

translation 

Neural 

Networks 

Explores AI methods for converting 

programming languages with focus on 

performance, accuracy, and 

challenges in real-world scenarios. 

Practical application of 

AI techniques for code 

translation.   

H. Ahmad et 

al. [14] 

Java-Python 

code translation 

Parallel 

corpus + 

Neural 

Networks 

Develops AVATAR, a parallel corpus 

tailored for Java and Python 

translation tasks, with attention on 

syntactic and semantic equivalence. 

Focused on Java-

Python parallel data; 

aligns semantic and 

syntactic structures.   

J. Chen et al. 

[15] 

Code 

translation 

(Python to 

Java) 

Adaptive 

source code 

converter 

Introduces an algorithm-adaptive 

approach to automate Python-Java 

code translation based on program 

structure. 

Adapts based on 

algorithmic structures 

in the source code.   

F. Guo et al. 

[2] 

Code 

representation 

pre-training 

Graph-based 

Transformer 

Enhances pre-training of code 

representations by modeling the data 

flow in source code. 

Incorporates data flow 

information in pre-

training.   

W. Lu et al. 

[16] 

Benchmark for 

code 

understanding 

and generation 

Multiple ML 

models 

Presents CodeXGLUE, a benchmark 

dataset with tasks spanning code 

understanding and generation, 

fostering reproducibility in ML-based 

code analysis research. 

Extensive benchmark 

covering diverse tasks 

like code 

summarization, 

translation, and 

synthesis.   

Z. Chen et 

al. [17] 

Program 

translation 

Tree-to-Tree 

Neural 

Network 

Develops a novel neural network 

architecture that translates source code 

by modeling the tree structures of 

programming languages. 

Utilizes tree-based 

syntax for program 

translation.   

L. Zhu et al. 

[3] 

Code 

representation 

Tree-based 

Transformer 

Proposes a tree-based pre-training 

model for better programming 

language understanding by leveraging 

hierarchical structures. 

Incorporates 

hierarchical tree-based 

syntax in pre-training.   

A. Alon et 

al. [6] 

Code 

summarization 

Sequence 

generation 

Converts abstract syntax trees (ASTs) 

into sequences to generate natural 

language summaries of source code. 

Uses AST paths for 

summarization; 

effective for function-

level descriptions.   
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Y. Feng et 

al. [18] 

Code 

generation 

Structural 

language 

models 

Combines language models with 

structural code analysis to generate 

code across multiple programming 

languages. 

Cross-language code 

generation with 

structural awareness.   

M. Fadel et 

al. [19] 

Pre-training for 

code 

understanding 

and generation 

Unified pre-

training 

Proposes a single pre-training 

framework for both program 

understanding and code generation 

tasks. 

Combines multiple 

programming tasks 

into a unified pre-

training model.   

S. Zhao et 

al. [10] 

Code 

evaluation 

Execution-

based scoring 

Introduces a method to evaluate 

generated code by learning from its 

execution behavior. 

Focuses on execution 

semantics for 

evaluation metrics.   

L. Wang et 

al. [9] 

Code similarity BLEU-based 

metric 

Proposes CrystalBLEU, a code 

similarity metric that balances 

efficiency and precision for evaluating 

code translations. 

Efficient and precise 

similarity scoring for 

code comparison.   

Y. Artetxe et 

al. [20] 

Unsupervised 

natural 

language 

translation 

Neural 

machine 

translation 

(NMT) 

Pioneers unsupervised neural machine 

translation by leveraging monolingual 

corpora and language similarity 

features. 

Focus on unsupervised 

methods; foundational 

to later work in NMT.   

S. Kanade et 

al. [21] 

Multilingual 

program 

translation 

Multilingual 

training 

Utilizes multilingual code snippets to 

train translation models for cross-

language program understanding and 

generation. 

Multilingual training 

with parallel corpora.   

F. Patil and 

D. Joshi [22] 

Statistical 

machine 

translation for 

code migration 

Statistical MT Proposes lexical-based statistical 

methods for migrating code between 

programming languages. 

Combines lexical 

features with statistical 

modeling.   

R. Liu et al. 

[23] 

Multilingual 

code translation 

Parallel 

corpus 

Introduces XTest, a corpus of code 

translations augmented with test cases 

to validate translation quality. 

Includes test cases for 

validation of 

translations.   

C. Chen and 

F. Chen [24] 

Code 

evaluation 

BLEU score 

analysis 

Analyzes the suitability of BLEU 

scores for evaluating programming 

code migration. 

Highlights limitations 

of BLEU in the 

context of code 

evaluation.   

Y. Wang et 

al. [4] 

Pre-training for 

code 

understanding 

and generation 

Transformer 

(CodeT5) 

Proposes CodeT5, a model that 

incorporates identifier awareness to 

improve pre-training for code-related 

tasks. 

Identifier-aware design 

for better code 

understanding and 

generation.   

A. Vaswani 

et al. [25] 

Foundation of 

Transformer 

architecture 

Transformer Introduces the Transformer model, a 

novel neural network architecture that 

replaces recurrence with self-attention 

mechanisms. 

Pioneered self-

attention; basis for 

many later NLP and 

code-related models.   

M. Johnson 

et al. [26] 

Multilingual 

natural 

language 

translation 

Neural 

machine 

translation 

Explores multilingual translation 

models that can translate between a 

large number of language pairs 

without explicit parallel data. 

Scales translation to 

many languages using 

a unified model.   
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P. Schultz 

and B. 

Wong [27] 

Hybrid 

translation 

(rule-based + 

neural models) 

Hybrid model 

(rule-based + 

neural NMT) 

Combines rule-based and neural 

translation approaches for enhanced 

performance in niche translation tasks. 

Leverages strengths of 

both rule-based and 

neural methods.   

Z. Feng et 

al. [1] 

Pre-training for 

code 

understanding 

and generation 

Transformer 

(CodeBERT) 

Extends BERT for programming 

languages by leveraging bimodal data 

(code and natural language). 

Pre-trained on code-

natural language pairs 

for diverse tasks.   

K. Papineni 

et al. [7] 

Machine 

translation 

evaluation 

BLEU metric Proposes BLEU, a metric for 

evaluating the quality of machine-

translated text by comparing it to 

reference translations. 

Widely used metric in 

machine and code 

translation tasks.   

S. Ren et al. 

[8] 

Code 

evaluation 

CodeBLEU 

metric 

Introduces CodeBLEU, an evaluation 

metric that accounts for syntactic, 

semantic, and structural properties of 

code. 

Tailored for evaluating 

programming code 

synthesis 

.   

 

5. Tools and Frameworks 

Several tools have emerged to support code translation, including both traditional and AI-powered systems: 

• Babel: Babel is a popular JavaScript transpiler that enables developers to use modern JavaScript features, 

such as ES6+ syntax, in environments that may only support older versions of the language. Babel works 

by parsing JavaScript code and converting it into a backwards-compatible version, ensuring that new 

features like arrow functions, async/await, and other modern syntax can be utilized without breaking 

compatibility. It plays a critical role in modern web development by facilitating code translation between 

JavaScript versions and allowing for seamless use of cutting- edge features. Citation: Babel does not 

have a specific academic paper associated with it, but it is widely documented in web development 

literature. 

• Haxe: Haxe is a cross-platform toolkit that supports source-to-source translation between multiple 

programming languages. It provides a high-level programming language that can be compiled into several 

target languages such as JavaScript, Python, C++, and more. Haxe also offers a standard library that can be 

used across all supported platforms, making it a versatile solution for cross-platform development. Haxe’s 

powerful type system and flexibility make it an effective tool for creating software that runs across 

diverse environments without major changes to the source code. 

• TransCoder: TransCoder is a neural transcompiler developed by Facebook that uses unsupervised 

machine learning to translate between different programming languages, including Python, C++, and Java. 

Unlike traditional transpilers, TransCoder does not rely on parallel datasets for training. Instead, it employs 

unsupervised methods like denoising autoencoders and back-translation to learn the semantics of different 

languages, allowing it to generate accurate translations even without explicitly aligned examples. The 

model represents a significant leap in code translation by handling multiple languages in an unsupervised 

manner. [5] 

 

6. Challenges in Code Translation 

Despite significant advancements in automated code translation, many challenges persist that hinder seamless and 

reliable conversions between programming languages. These challenges primarily stem from differences in 

syntax, semantics, platform-specific constraints, and the varying ecosystems associated with each language. 
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A. Handling Language-specific Idioms 

Programming languages often feature unique idioms, syntactic constructs, and conventions that lack direct 

equivalents in other languages. For example, Python’s list comprehensions provide a concise and readable 

method for manipulating collections but translating them into Java may necessitate the use of verbose loops 

or other workarounds, which can compromise readability and conciseness. This challenge is underscored in 

research such as that by Roziere et al. (2021) [11], which highlights the difficulty of capturing idiomatic 

expressions across different languages. Effectively translating these idioms without introducing errors or 

significantly altering the code’s structure is a complex task that frequently requires advanced techniques like 

unsupervised machine translation models (Lachaux et al., 2020) [5], which learn mappings without relying on 

parallel training data. 

 

B. Semantic Preservation 

Maintaining the semantic integrity of the original code during translation is both crucial and challenging. 

Programming languages often vary in their implementations of core concepts such as memory management, 

error handling, and type systems. For instance, the weakly typed nature of Python presents difficulties when 

translating to statically typed languages like Java or C++. Ahmad et al. (2020) introduce the AVlel corpus for 

program translation, which aims to address this issue by providing Java-Python translation examples and 

emphasizing the challenges of ensuring semantic equivalence, particularly regarding differences in exception 

handling and variable scoping. 

Additionally, subtle runtime differences can result in discrepancies in performance or correctness after translation. 

Tools like CrystalBLEU (Wang et al., 2021) have been developed to assess the semantic fidelity of the 

original and translated code, going beyond syntax to focus on preserving the functional behavior of the code. 

However, fully capturing the nuances of semantic equivalence remains an ongoing research challenge, 

especially as the complexity of code increases. 

 

C. Performance Optimization 

Different programming languages are optimized for specific use cases, and translating code can lead to 

performance degradation if the optimization patterns of the target language are not effectively utilized. Chen et 

al. (2020) highlight this issue in their study on Python-to-Java translation, noting that certain Python constructs, 

such as dynamic typing and duck typing, can be computationally expensive to replicate in Java, potentially 

causing performance bottlenecks. Additionally, Zhang et al. (2021) emphasizes the importance of considering 

both the efficiency and idiomatic correctness of translated code in their work on CodeTransOcean, as direct 

translations may yield code that is syntactically correct but inefficient in the target language. 

Moreover, pre-trained models like CodeBERT and GraphCodeBERT aim to enhance the quality of code 

translations by learning patterns from large codebases. However, the challenge of performance tuning often 

still necessitates manual intervention, as these models may not fully optimize the translated code for the 

specific characteristics of the target language. 

 

D. Cross-platform Compatibility 

Languages often depend on platform-specific libraries, frameworks, and APIs, which makes cross-platform 

code translation a particularly challenging task. This difficulty is heightened when translating code between 

environments that have different system architectures and conventions. For instance, while both Java and C# 

operate in managed environments (the JVM and CLR, respectively), their standard libraries and system calls 

differ, complicating straightforward translations. Roziere et al. (2021) [11] highlights that automated unit tests 

can help ensure some level of compatibility, but challenges persist when dealing with platform specific 

libraries or system calls. 
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Additionally, Liu et al. (2021) introduce XTest, a parallel corpus equipped with test cases specifically 

designed for multilingual code translations. Their approach advocates using these test cases to verify that 

the translated code functions correctly across various platforms. However, achieving full cross-platform 

compatibility may necessitate further adaptations, such as incorporating platform-agnostic libraries or rewriting 

platform-specific code segments. 

 

7. Comparative Analysis of Tools 

The landscape of code translation tools is diverse, encompassing everything from traditional rule-based 

systems to modern neural models. Each approach has its own strengths and limitations regarding accuracy, 

scalability, readability, and error handling. This section presents a comparative analysis of these tools, focusing 

on key aspects such as accuracy, scalability, and debugging. 

 

A. Accuracy and Readability 

Neural models, such as TransCoder, have shown superior accuracy in translating between languages, 

especially for complex pairs like Python and C++ [5]. Unlike rule-based systems that depend on predefined 

translation rules, neural models learn from vast datasets, enabling them to generalize more effectively to 

previously unseen code structures. Models like CodeBERT [1] and GraphCodeBERT [2] excel at capturing deep 

syntactic and semantic relationships, which enhances translation accuracy. 

Fig. 1. BLEU Scores for Code Translation 

 

However, a persistent challenge with these models is readability. Neural translations often yield code 

that, while functional, does not adhere to the idiomatic practices of the target language. This issue is 

particularly pronounced when translating between languages with fundamentally different design paradigms. 

For instance, Python code translated into C++ may fail to fully utilize C++’s object-oriented features, 
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resulting in code that is syntactically correct but inefficient or awkward [5]. Manual intervention is often 

necessary to refine the translated code, ensuring that the output aligns with standard coding practices in the 

target language. This need for refinement is crucial for maintaining readability and adhering to idiomatic 

conventions, as highlighted in Lexical Statistical Machine Translation for Language Migration in their research 

on language migration. [22] 

 

B. Scalability and Speed 

Scalability is a significant advantage of neural models. Traditional rule-based systems, while effective for 

small-scale tasks and specific language pairs, struggle with large datasets and complex codebases. These systems 

depend on predefined transformation rules, which can become unwieldy as code complexity, or the number of 

supported languages increases. In contrast, neural models like TransCoder [5] and CodeT5 [4] can manage 

large-scale datasets by learning generalizable representations of code, allowing them to scale more effectively 

across different languages and extensive codebases. 

Fig. 2. Training Time vs Model Architecture 

 

However, the scalability of neural models does come with a trade-off in terms of speed. As the model size 

increases, so does the inference time. Larger models typically exhibit longer inference times, particularly when 

processing complex, multi-language datasets like those found in CodeTransOcean [12]. While rule-based 

systems may yield quicker results for smaller tasks, neural models excel in scenarios where scalability and 

flexibility take precedence over execution speed. 

Efforts like CodeXGLUE have created extensive benchmark datasets to enhance the scalability of neural 

translation models, aiming to mitigate speed trade-offs by optimizing architecture and inference 

algorithms [16]. Nevertheless, additional optimizations are necessary to minimize computational overhead for 

real-time or near real-time translation tasks. 



www.pijet.org PICT’s International Journal of Engineering and Technology (PIJET) ISSN: 2584-2668  

PIJET-08 Volume-2, Issue-2, June 2025 available at www.pijet.org P a g e  | 94 

 

 

 

C. Error Handling and Debugging 

Error handling remains a significant challenge for AI-powered code translators. While neural models excel at 

generating syntactically correct code, they often struggle with ensuring the correctness of error handling 

mechanisms, particularly when translating between languages that employ different paradigms for managing 

exceptions. For instance, converting error-prone code from Python, which heavily relies on exceptions, to 

C++, which utilizes more explicit error handling, can introduce subtle bugs that are difficult to track down. 

AI-generated code might compile successfully, yet still contain subtle semantic errors or issues related to 

platform- specific behaviors. This challenge is underscored by XTest, which offers a multilingual corpus with 

test cases designed to ensure the correctness of translated code. However, debugging AI-generated code 

frequently requires substantial manual intervention, especially for complex tasks or when working with 

unfamiliar language pairs. [23] Hybrid approaches that combine rule-based systems or human oversight with 

neural models are showing promise in enhancing error handling accuracy. For example, [27] suggests a hybrid 

model that merges neural machine translation with classification-based rules, allowing for more reliable code 

translation and reducing the risk of runtime errors. Additionally, the implementation of automated unit tests, 

as explored by, provides a means to verify the correctness of translated code. Nevertheless, these methods 

are not foolproof and often depend on the quality and comprehensiveness of the test cases employed. 

 

8. Recent Advances 

 

A. Unsupervised Machine Learning 

Unsupervised machine learning has transformed code translation by removing the dependence on parallel corpora, 

which are often limited or unavailable for many programming languages. Models like TransCoder mark a 

significant advancement in this area, leveraging large, unlabeled datasets to identify syntactic and semantic 

patterns across multiple programming languages. This method allows these models to generalize across languages 

without needing paired examples, making them particularly adaptable to new languages that lack annotated 

training data. TransCoder has effectively translated between high-level languages such as Python, C++, and 

Java, showcasing the potential of unsupervised learning to scale code translation tasks across various language 

pairs. [5] 

Moreover, unsupervised approaches facilitate the discovery of hidden relationships between programming 

languages, as demonstrated by earlier work on unsupervised neural machine translation, which provided a 

foundation for applying these techniques to code translation. This adaptability is essential for broadening the 

scope of automated code translation to include niche or domain-specific languages. [20] 

 

B. AI-assisted Code Translation 

AI-assisted tools like Codex, built on the GPT architecture, are making a substantial impact by facilitating 

natural language-to-code translation. These models can convert plain language descriptions into code, 

significantly boosting developer productivity by automating repetitive tasks and enabling rapid prototyping of 

new features. For instance, Codex allows developers to articulate desired functionality in everyday language, 

which is then transformed into executable code. This capability is changing the way developers engage with 

codebases, lowering the barrier to coding proficiency and speeding up task completion. 

Despite the impressive potential of models like Codex and other transformer-based architectures, challenges 

remain in generating complex or highly idiomatic code without errors. [25] Nonetheless, the advancements in 

translating natural language to code open up exciting opportunities for the future of human-computer 

interaction, where AI could serve as a valuable co-pilot for developers. [12] 
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C. Benchmarking and Datasets 

The development of standardized benchmarking tools has been crucial in advancing code translation models. 

Tools like CodeTransOcean offer a comprehensive multilingual benchmark specifically designed to evaluate the 

performance of these models across various languages. These benchmarks measure important metrics such as 

accuracy, efficiency, readability, and semantic preservation, providing researchers with a unified framework 

for comparing different models. 

In addition to CodeTransOcean, datasets like CodeXGLUE and XTest have also been created to enhance the 

evaluation of code translation models. These resources are vital for monitoring the progress of AI-driven 

code translation, as they provide standardized, real-world test cases that ensure models perform effectively not 

only in controlled environments but also in actual development scenarios. 

 

Fig. 3. Performance vs Dataset Size 

 

The graph illustrates the performance of various code translation models—CodeBERT, GraphCodeBERT, 

TreeBERT, CodeT5, and TransCoder—measured by the CodeBLEU score across different dataset sizes (50K, 

100K, and 1M samples). The results indicate that all models improve as dataset size increases, with CodeBERT 

consistently achieving the highest performance. GraphCodeBERT, TreeBERT, and CodeT5 also show strong 

performance, with TreeBERT and CodeT5 closely competing. TransCoder, while improving with dataset size, 

generally lags behind the other models. This suggests that larger datasets contribute significantly to translation 

accuracy, and transformer-based models, particularly CodeBERT, benefit the most from increased data availability. 
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Table 4. Summary of Datasets Used 

 

9. Future Directions 

 

A. Multilingual Models 

The future of code translation is headed toward the creation of truly multilingual models that can efficiently 

handle multiple programming languages within a single framework. While current models like TransCoder 

and CodeBERT can translate between specific pairs of languages, future research aims to expand their 

capabilities to support a broader range of programming languages simultaneously. This transition to 

multilingual models will enhance software interoperability, enabling developers to work across various 

languages and platforms more effectively. 

Like advancements in massively multilingual neural machine translation, the objective is to develop models that can 

learn language-agnostic representations of code. [26] Such models would facilitate seamless translation 

between different languages, making it easier to navigate polyglot environments where software components are 

written in diverse languages. This approach will also help meet the demand for inter-language operability, 

allowing systems to connect languages like Python, C++, and JavaScript without the need for manual 

translation. 

 

B. Contextual Code Translation 

Future developments in code translation are expected to prioritize the integration of contextual information to 

improve translation quality. Current models often treat code snippets as standalone units, but in reality, code 

functions within larger projects, where factors such as coding style, project structure, and dependencies play a 

vital role in creating accurate and maintainable translations. Research on models like TreeBERT is delving into 

how to incorporate structural and contextual aspects of code, which could greatly enhance the relevance and 

maintainability of translated outputs. [3] 

Context-aware models would consider not only the syntax and semantics of the code being translated but also the 

broader context of the project. This includes coding standards, third-party libraries, and architectural patterns. 

Such an approach could lead to translations that are more aligned with the original developer’s intentions, 

resulting in cleaner and more maintainable code. 

 

Dataset Description Size Languages Source  Purpose 

CodeTransOcean 

[12] 

A dataset for translating 

programming code between various 

languages to support cross-language 

code understanding. 

∼50M 

code 

snippets 

Java, 

Python, 

C++, etc. 

Open-

source 

repositories 

Code 

translation and 

understanding 

CodeSearchNet 

[29] 

A benchmark dataset for natural 

language code search tasks, linking 

code to natural language 

descriptions. 

∼6M 

functions 

Python, 

Java, 

JavaScript 

GitHub 

repositories 

Code search 

and retrieval 

CodeXGlue [16] A comprehensive benchmark suite 

for code intelligence tasks, including 

code generation, translation, and 

search. 

20+ tasks 

(∼13M 

data 

points) 

Python, 

Java, C, 

JavaScript 

Diverse 

open-

source 

projects 

General code 

intelligence 

tasks 

TheStack [30] A massive dataset of permissively 

licensed source code for diverse 

languages and research applications. 

∼3TB of 

code 

350+ 

languages 

Public 

repositories 

Large-scale 

pretraining for 

code models 
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C. Error Mitigation 

One of the key challenges in current AI-driven code translation is the frequent introduction of errors, 

particularly when handling complex or real-world applications. The future of code translation will focus heavily 

on refining error mitigation techniques to ensure that the translated code is not only syntactically correct but 

also maintains semantic accuracy. Tools like XTest, which generate test cases to verify the correctness of 

translated code, will likely evolve further to automate the debugging process. [23] However, more advanced 

methods will be needed to address edge cases and subtle differences between languages. 

In addition, hybrid systems that combine neural models with human oversight or rule-based elements (Schultz and 

Wong, 2021) hold potential for improving error management. These systems can leverage both the broader 

patterns captured by AI models and the precision needed for specific edge cases. Future research may also 

investigate the integration of automated debugging tools directly into translation models, reducing the reliance 

on manual error correction and making the development process more efficient. 

Fig. 4. Overview of a generalized Code Translation Pipeline 
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10. Conclusion 

Code translation has made remarkable progress, evolving from rule-based systems to advanced AI-driven models 

capable of translating complex programming languages with impressive accuracy. Models like CodeT5, 

GraphCodeBERT, and CodeBERT have demonstrated their ability to achieve high BLEU scores, with 

CodeT5 leading at 82.98 for Java-to-C# translation. This reflects the impact of pretraining on massive 

datasets and fine-tuning for specific tasks, enabling these models to generalize better across languages. 

Furthermore, performance trends observed over training epochs, as shown in BLEU score progression, highlight 

the importance of extended training and hyperparameter tuning in achieving optimal results. 

 

Despite this progress, there are challenges to address. One critical issue is preserving semantic integrity when 

translating between languages with different programming paradigms. Languages like Java and C# share structural 

similarities, making translation relatively straightforward, but translating between paradigmatically distinct 

languages, such as Python and C++, introduces complexities like differences in type systems, runtime behavior, 

and idiomatic practices. These challenges are further compounded by the need for models to account for 

language-specific optimizations to produce efficient and error free code. Numerical evidence from various 

studies also points to the significance of dataset size, with larger datasets yielding better performance; for 

instance, BLEU and CodeBLEU scores improved consistently as datasets expanded from 50K to 1M samples. 

 

Looking ahead, future research in code translation will likely focus on developing more adaptable and 

context-aware models. Unsupervised systems like TransCoder and AI tools like Codex have already shown 

promising results in generalizing across languages without requiring parallel datasets, even translating natural 

language into executable code. However, advancements are needed to incorporate contextual elements like project 

structure and coding style, ensuring that translated code is not only accurate but also maintainable and 

idiomatic. The ongoing goal will be to reduce human intervention by enhancing accuracy, preserving semantic 

integrity, and delivering reliable, real-world solutions for the increasing demands of cross-language software 

development. 
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